The apurinic/apyrimidinic (AP) sites are frequent DNA lesions in genomic DNA (gDNA). Here we report a facile approach for rapid quantification of the AP sites in gDNA with high selectivity and sensitivity. With the assistance of T4 pyrimidine dimer glycosylase, we covalently labeled the AP sites with 5'-hydroxylamine-modified oligonucleotide strand with high chemical selectivity against to naturally occurring formylated-bases, such as 5-formylcytosine and 5-formyluracil.
View Article and Find Full Text PDFSensitive detection of low-abundance driver mutations may provide valuable information for precise clinical treatment. Compared to next-generation sequencing and droplet digital PCR methods, fluorescent probes show great flexibility in rapid detection of specific mutations with high sensitivity and easily accessible instruments. However, existing approaches with fluorescent probes need an additional step to convert duplex DNA to single-stranded DNA (ssDNA) before the detection step, which increases the time, cost, and risk of loss of low-input target strands.
View Article and Find Full Text PDFConsecutive microwave sintering is a method proposed in this study to dispose soil contaminated by Sr during a nuclear accident by rapidly solidifying the contaminated soil. The results show that soil contaminated with 20 wt% SrSO and 30 wt% SrSO can be completely solidified by microwave sintering at 1100-1200 and 1300 ℃, respectively, for 30 min. Sr was found to be cured into slawsonite (SrAlSiO) and glass structures.
View Article and Find Full Text PDF