Publications by authors named "Minghao Hua"

To provide the basis for thermal conductivity regulation of vermicular graphite cast iron (VGI), a new theoretical method consisting of shape interpolation, unit cell model and numerical calculation was proposed. Considering the influence of the graphite anisotropy and interfacial contact thermal conductivity (ICTC), the effective thermal conductivity of a series of unit cell models was calculated by numerical calculation based on finite difference. The effects of microstructure on effective thermal conductivity of VGI were studied by shape interpolation.

View Article and Find Full Text PDF

Group IIIA-VA metal sulfides (GMSs) have attracted increasing attention because of their unique Na-storage mechanisms through combined conversion and alloying reactions, thus delivering large theoretical capacities and low working potentials. However, Na diffusion within GMSs anodes leads to severe volume change, generally representing a fundamental limitation to rate capability and cycling stability. Here, monodispersed In S /nitrogen and sulfur co-doped carbon hollow microspindles (In S /NSC HMS) are produced by morphology-preserved thermal sulfurization of spindle-like and porous indium-based metal organic frameworks.

View Article and Find Full Text PDF

In this work, by combining density functional theory calculations and Monte Carlo simulations with cluster expansion Hamiltonian methods, we investigate the surface aggregation of Pt atoms on the Pt/Ag(111) surface under vacuum conditions and in the presence of CO. The results show the decisive influence of CO-CO interactions and reveal the competition between CO-metal interactions and CO-CO repulsion. Thus, in addition to evidence of reverse Pt segregation caused by CO adsorption, two methods for tuning the surface Pt atomic system synthesis are found, where the surface can be adjusted by tuning the CO coverage to obtain a larger number of monomers (0.

View Article and Find Full Text PDF

In this article, the behavior of various Pd ensembles on the PdAg(111) surfaces was systematically investigated for oxygen reduction reaction (ORR) intermediates using density functional theory (DFT) simulation. The Pd monomer on the PdAg(111) surface (with a Pd subsurface layer) has the best predicted performance, with a higher limiting potential (0.82 V) than Pt(111) (0.

View Article and Find Full Text PDF

In this paper, the Wulff cluster model which has been proved to successfully describe the melt structure of pure metals, homogenous alloys and eutectic alloys has been extended to an alloy with intermetallic compounds (InBi). According to the cohesive energy and the solid-state XRD patterns, the most possible types of clusters in the melt are Bi and InBi. At relatively high temperatures, the superimposed XRD (simulated) patterns of Bi and InBi clusters are in good agreement with the experimental HTXRD patterns in terms of the position and intensity of the peaks.

View Article and Find Full Text PDF

The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first-principles calculations and molecular dynamics simulations. The most stable water structure on the Ag(100) and Ag(511) surfaces have been obtained. The AIMD results showed rather high stability of the water layer on the stepped surface at 140 K, indicating a crystal-like structure with long-range ordering.

View Article and Find Full Text PDF

In this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer.

View Article and Find Full Text PDF

In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes.

View Article and Find Full Text PDF

In the present work, the Wulff cluster model, which has been proved to be successful for pure metals and homogeneous alloys, has been extended to eutectic alloys (Ag-Cu and Al-Si). In our model, the shapes of the clusters in melts were determined by the interfacial energy calculated by density functional theory (DFT) of different facet families based on Wulff theory. The cluster size was given by the pair distribution function (PDF) g(r), which was converted from experimental high-temperature X-ray diffraction (HTXRD).

View Article and Find Full Text PDF