Publications by authors named "Minghai Jing"

The combination of an absorbing structure and a road is a promising strategy for road deicing using microwaves. In this study, cement mortar (CM) specimens containing a carbon fiber screen (CFS) were prepared to concentrate electromagnetic losses on a road surface. The effect of the size and depth of the CFS on the surface heating efficiency of the microwave was studied and optimized, and a microwave deicing experiment was conducted.

View Article and Find Full Text PDF

This paper mainly studies the compatibility and properties of octavinyl oligomeric silsesquioxane nanomaterial (nano-OvPOSS)-modified asphalt, in comparison with those of traditional zinc oxide nanomaterial (nano-ZnO) and silica nanomaterial (nano-SiO), through the method of molecular dynamics simulation. Nano-OvPOSS, an organic-inorganic nano-hybrid material, is studied for the first time in the application of asphalt modification. By studying different sizes and types of nanomaterials, this paper elucidates the superiority of nano-OvPOSS as an asphalt modifier owing to the unique microstructure of eight organic groups of its inorganic framework.

View Article and Find Full Text PDF

The present research is carried out to inspect the influence of nano-OvPOSS (octavinyl oligomeric silsesquioxane) with different particle sizes on styrene-butadiene-styrene (SBS) modified asphalt through the method of molecular dynamics simulation. This nanomaterial is investigated for the first time to be used in asphalt modification. With the construction of modified asphalt simulation models and the analysis of their mixing energy, radius of gyration (R), radial distribution function (RDF), ratio of free volume (RFV), heat capacity, bulk modulus, and shear modulus, this study elucidates the influence of nano-OvPOSS on the compatibility between SBS and asphalt, on the structure of SBS as well as that of asphalt molecules and on the temperature stability and mechanical properties of SBS modified asphalt.

View Article and Find Full Text PDF

Municipal solid waste incineration fly ash (FA) contains high contents of salts and high concentrations of heavy metals, which makes FA disposal extremely difficult. However, heavy metal elements could potentially be separated from FA during thermal treatment process to make it possible to be recycled. This work aims to study the volatilization of heavy metals in FA treated by molten salt method.

View Article and Find Full Text PDF

This research investigated the heavy metal leaching property and cementitious material preparation by treating municipal solid waste incineration fly ash through the molten salt process. The results indicated that the heavy metal thermal evaporation of fly ash in the molten salt was related to molten salt composition, heat treatment temperature and atmosphere. After treatment with sodium chloride molten salts (contains 10-50 wt% calcium chloride) from 900°C to 1000°C for 2 h, the leaching concentrations of lead, cadmium, copper, zinc and other heavy metals in fly ash were decreased more than 90% and they could fully meet with the landfill standard.

View Article and Find Full Text PDF