Metagenomic sequencing analysis (mNGS) has been implemented as an alternative approach for pathogen diagnosis in recent years, which is independent of cultivation and is able to identify all potential antibiotic resistance genes (ARGs). However, current mNGS methods have to deal with low amounts of prokaryotic deoxyribonucleic acid (DNA) and high amounts of host DNA in clinical samples, which significantly decrease the overall microbial detection resolution. The recently released nanopore adaptive sampling (NAS) technology facilitates immediate mapping of individual nucleotides to a given reference as each molecule is sequenced.
View Article and Find Full Text PDFPurpose: In this study, we aimed to investigate biofilm formation characteristics in clinical Staphylococcus aureus (S. aureus) isolates with erythromycin (ERY) resistance from China and further analyze their correlations with antimicrobial susceptibility and molecular characteristics.
Methodology: A total of 276 clinical isolates of ERY-resistant S.
The aim of this study was to determine whether in vitro induced erythromycin resistance facilitates the cross-resistance to the novel fluoroketolide, solithromycin, in Staphylococcus aureus. Four strains of methicillin-susceptible S. aureus strains S2, S3, S5 and S7 were successfully induced to establish erythromycin-resistant strains by continuous in vitro culture with erythromycin.
View Article and Find Full Text PDFEnterococcal infections have become one of the most challenging nosocomial problems. Tedizolid, the second oxazolidinone, is 4-fold to 8-fold more potent in vivo and in vitro than linezolid against enterococci. However, the characteristics of tedizolid related to enterococci isolates in China remain elusive.
View Article and Find Full Text PDFBackground: Telbivudine can cause severe side effects, including myositis, neuritis, rhabdomyolysis, and lactic acidosis. However, reported cases of telbivudine leading to multiple organ failure are rare. Here, we report a case of telbivudine-induced severe polymyositis, lactic acidosis, and multiple organ failure.
View Article and Find Full Text PDF