Publications by authors named "Mingfu Wen"

Carbon dots (CDs) are a fascinating new type of fluorescent carbon nanomaterial with excellent photoelectric properties. However, preparing long-wavelength and multicolor-emitting CDs has been challenging, limiting their large-scale applications. Fortunately, a new efficient method has been proposed to co-regulate CDs' multicolor spectra using an ultrasonic microreactor.

View Article and Find Full Text PDF

Inorganic lead halide perovskite is one of the most excellent fluorescent materials, and it plays an essential role in high-definition display and visible light communication (VLC). Its photochromic properties and stability determine the final performance of light-emitting devices. However, efficiently synthesizing perovskite with high quality and stability remains a significant challenge.

View Article and Find Full Text PDF

Benefit from their near-unity photoluminescence quantum yield (PL QY), narrow emission band, and widely tunable bandgap, metal halide perovskites have shown promising in light-emitting applications. Despite such promise, how to facile, environmentally-friendly, and large-scale prepare solid metal halide perovskite with high emission and stability remains a challenging. Herein, we demonstrate a convenient and environmentally-friendly method for the mass synthesis of solid CsPbBr/CsPbBr composites using high-power ultrasonication.

View Article and Find Full Text PDF

Carbon dots (CDs) are attracting much interest due to their excellent photoelectric properties and wide range of potential applications. However, it is still a challenge to regulate their bandgap emissions to achieve full-color CDs with high emissions. Herein, we propose an approach for producing full-color emissive CDs by employing a solvent engineering strategy.

View Article and Find Full Text PDF

This article investigates the maximum spreading of ferrofluid droplets impacting on a hydrophobic surface under nonuniform magnetic fields. A generalized model for scaling the maximum spreading is developed. It is observed that, if the magnetic field strength is zero, a ferrofluid droplet not only demonstrates similar spreading dynamics as the water droplet but also obeys the same scaling law for the maximum spreading factor.

View Article and Find Full Text PDF

Date palm regards as a valuable genomic resource for exploring the tolerance genes due to its ability to survive under the sever condition. Although a large number of differentiated genes were identified in date palm responding to salt stress, the genome-wide study of alternative splicing (AS) landscape under salt stress conditions remains unknown. In the current study, we identified the stress-related genes through transcriptomic analysis to characterize their function under salt.

View Article and Find Full Text PDF

Drought is one of the major environmental constraints affecting crop productivity. Plants have to adjust their developmental and physiological processes to cope with drought. We previously identified 18 cassava serine/arginine-rich (SR) proteins that had a pivotal role in alternative splicing in response to environmental stress.

View Article and Find Full Text PDF

Background: As an important biofuel plant, the demand for higher yield L. is rapidly increasing. However, genetic analysis of and molecular breeding for higher yield have been hampered by the limited number of molecular markers available.

View Article and Find Full Text PDF

Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations.

View Article and Find Full Text PDF

Background: Jatropha curcas L. has attracted a great deal of attention worldwide, regarding its potential as a new biodiesel crop. However, the understanding of this crop remains very limited and little genomic research has been done.

View Article and Find Full Text PDF