By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host.
View Article and Find Full Text PDFA new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease.
View Article and Find Full Text PDFMany studies have shown that β-glucan induces a trained immune phenotype in innate immune cells to defend against bacterial and fungal infections. The specific mechanism involves cellular metabolism and epigenetic reprogramming. However, it is unclear whether β-glucan plays a role in antiviral infection.
View Article and Find Full Text PDFIn patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks.
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2023
Viral infection in respiratory tract usually leads to cell death, impairing respiratory function to cause severe disease. However, the diversity of clinical manifestations of SARS-CoV-2 infection increases the complexity and difficulty of viral infection prevention, and especially the high-frequency asymptomatic infection increases the risk of virus transmission. Studying how SARS-CoV-2 affects apoptotic pathway may help to understand the pathological process of its infection.
View Article and Find Full Text PDFThe panel data of 50 new energy vehicle enterprises in Shanghai and Shenzhen A-shares from 2012 to 2021 are selected to empirically analyze the impact of government subsidies on the innovation of new energy vehicle enterprises and to further discuss the differences between such an impact in different forms and regions. The study finds that, first, government subsidies have a certain promotion effect on the innovation of new energy vehicle enterprises, and an inverted U-shaped relationship exists thereof. Second, at the enterprise level, government subsidies have a significant effect on the innovation of non-state enterprises, downstream vehicle enterprises, and enterprises with lower establishment years, and the inverted-U trend is evident.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2023
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality.
View Article and Find Full Text PDFEndosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection.
View Article and Find Full Text PDFSignal Transduct Target Ther
July 2022
Molecular oxygen (O) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses.
View Article and Find Full Text PDFSignal Transduct Target Ther
August 2021
Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses.
View Article and Find Full Text PDFExcessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation.
View Article and Find Full Text PDFSARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production.
View Article and Find Full Text PDFBackground: Extracellular adenosine triphosphate (ATP), a key danger-associated molecular pattern (DAMP) molecule, is released to the extracellular medium during inflammation by injured parenchymal cells, dying leukocytes, and activated platelets. ATP directly activates the plasma membrane channel P2X7 receptor (P2X7R), leading to an intracellular influx of K, a key trigger inducing NLRP3 inflammasome activation. However, the mechanism underlying P2X7R-mediated activation of NLRP3 inflammasome is poorly understood, and additional molecular mediators have not been identified.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2020
Aging is a universal feature of life that is a major focus of scientific research and a risk factor in many diseases. A comprehensive understanding of the cellular and molecular mechanisms of aging are critical to the prevention of diseases associated with the aging process. Here, it is shown that MYSM1 is a key suppressor of aging and aging-related pathologies.
View Article and Find Full Text PDFThe immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation.
View Article and Find Full Text PDFOne of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice.
View Article and Find Full Text PDFZika virus (ZIKV) has emerged as a global health threat due to its unexpected causal link to devastating neurological disorders such as fetal microcephaly; however, to date, no approved vaccine or specific treatment is available for ZIKV infection. Here we develop a biomimetic nanodecoy (ND) that can trap ZIKV, divert ZIKV away from its intended targets, and inhibit ZIKV infection. The ND, which is composed of a gelatin nanoparticle core camouflaged by mosquito medium host cell membranes, effectively adsorbs ZIKV and inhibits ZIKV replication in ZIKV-susceptible cells.
View Article and Find Full Text PDFZika virus (ZIKV) infection is a public health emergency and host innate immunity is essential for the control of virus infection. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase-1 to facilitate interleukin-1β (IL-1β) secretion. Here we report that ZIKV stimulates IL-1β secretion in infected patients, human PBMCs and macrophages, mice, and mice BMDCs.
View Article and Find Full Text PDFEnterovirus 71 (EV71) is an RNA virus that causes hand-foot-mouth disease (HFMD), and even fatal encephalitis in children. Although EV71 pathogenesis remains largely obscure, host immune responses may play important roles in the development of diseases. Recognition of pathogens mediated by Toll-like receptors (TLRs) induces host immune and inflammatory responses.
View Article and Find Full Text PDF