Publications by authors named "Mingfei Sheng"

A novel polymer microcapsule-filled dye-doped liquid crystal (DDLC) and phase-change material (PCM) system inspired by biological materials was first proposed, which was further encapsulated into a calcium alginate substrate by wet spinning for making an electrochromic fiber with both bistable electric-optical capability and knitting characteristics. Results show that the optical appearance of the optimized microcapsules and fiber can be reversibly changed between colored and colorless states according to the electric field by switching the DDLCs between isotropic (I) and anisotropic (A) states. Moreover, both I and A states can remain stable for more than 1 week after removing the electric field, due to the synergy of the greatly increased spatial hindrance of the PCM with core loading of 22.

View Article and Find Full Text PDF

The diversification of electrochromic materials greatly expands the application fields of electrochromic devices. However, highly flexible electrochromic materials remain challenging due to the inherent limitations associated with the existing electrochromic processes. Inspired by the hydrogen bonding effect in the hydrogel structure, a highly elastic and bistable electrochromic ionic gel based on a hydrogen bonding cross-linking network is prepared by solution polymerization having excellent tensile resilience, uniform coloring, reversible switching (≤24.

View Article and Find Full Text PDF

Liquid crystal microcapsules have attracted increasing attention due to their sophisticated structures and adjustable multifunctional features. However, the synthesis of a microscale substrate with wide electromagnetic waveband modulation characteristics and good photoelectric stabilization is still limited and challenging. Herein, a new breed of microcapsules containing dye-doped liquid crystals in a yolk-shell configuration with VTES (vinyl-trim-ethyl-silane)-modified FeO@SiO is created.

View Article and Find Full Text PDF

Electrochromic materials have great application in soft displays and devices, but the application of ideal electrochromic textiles still faces challenges owing to the inconvenience of a continuous power supply. Here, electrochromic color-memory microcapsules (ECM-Ms-red, -yellow, and -blue) with a low drive voltage (2.0 V), coloration efficiency (921.

View Article and Find Full Text PDF

A new system of yolk-shell microcapsules containing two types of dye-doped liquid crystals was prepared via seed emulsion polymerization in which the synthetic process was mimicking plant respiration. The resulting system demonstrated reversible low voltage-driven switching between multispectral colored and transparent states. Moreover, wearable multicolor electrochromic fibers based on calcium alginate were produced via wet spinning to expand the application of yolk-shell dye-doped liquid crystal microcapsules.

View Article and Find Full Text PDF