At present, some progress has been made in developing NIR light-responsive free radical generators. However, the efficacy of theranostics continues to be hindered by tumor-associated inflammatory reactions. Hence, fulfilling the in situ release of free radicals upon NIR light excitation specifically activated by the inflammation microenvironment would be an ideal strategy for efficient inflammation eradication and tumor suppression but remains a challenge.
View Article and Find Full Text PDFThe fabrication of self-reporting photosensitizers (PSs), enabling real-time evaluation of the extent of elimination of cancer cells, holds significant scientific importance in the photodynamic therapy (PDT) process. To address the intrinsic challenge of the short-wavelength light source, this work proposed an innovative approach of rational design second near-infrared (NIR-II, 1000-1700 nm) light-excited fluorescent PS systems (named , , and , respectively) through modulating aggregation and deaggregation based on assembling strategy. Therein, the suitable interplanar distance of adjacent linked with C-H···π interactions was an idea for relieving compact π···π packing for fluorescent imaging as well as elevating the spin-orbit coupling for reactive oxygen species (ROS) generation.
View Article and Find Full Text PDFNitrite ions present a significant risk to both environmental and human health, necessitating precise and sensitive detection methods. Herein, we fabricated a highly sensitive SERS sensor based on PVDF/Au nanofibers for nitrite ion detection. The synthesis of PVDF nanofibers involved the utilization of electrospinning apparatus, while the uniformity and high density of SERS activity "hot spots" were achieved by directly coating plasma gold nanoparticles onto the PVDF surface adopting thermal evaporation.
View Article and Find Full Text PDFGelatin-based bioadhesives, especially methacrylated gelatin (GelMA), have emerged as superior alternatives to sutureless wound closure. Nowadays, their mechanical improvement and therapeutic delivery, particularly for hydrophobic antibiotics, have received ever-increasing interest. Herein, a reinforced gelatin-based hydrogel with a hydrophobic drug delivery property for skin wound treatment was reported.
View Article and Find Full Text PDFPhotodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering.
View Article and Find Full Text PDFUnveiling the synergism among multiple organelles for fully exploring the mysteries of the cell has drawn more and more attention. Herein, we developed two two-photon fluorescent bioprobes (Lyso-TA and Mito-QA), of which the conformational change triggered an "off-on" fluorescent response. Lyso-TA can real-time monitor the fusion and movement of lysosomes as well as unveil the mitophagy process with the engagement of lysosomes.
View Article and Find Full Text PDFThe construction of intelligent supramolecular nanocarriers has received much attention for their potential application in chemotherapy. Herein, we report the successful design and synthesis of a photoreactive monomer, N'-(2-nitrobenzyl)-N-acryloyl glycinamide (NBNAGA). Using a poly(ethylene glycol) (PEG)-based macro-RAFT agent, the amphiphilic diblock copolymer (BCP), PEG-b-PNBNAGA, was prepared through a reversible addition-fragmentation chain-transfer (RAFT) polymerization.
View Article and Find Full Text PDFPyrophosphate (PPi) played crucial roles in various fundamental physiological processes. Herein, a two-photon absorption (TPA) "On-Off-On" type benzoxazole-based fluorescence probe BN was designed and synthesized, which detected PPi through Cu displacing method in situ system in aqueous medium. The on-off-on process of BN recognizing PPi was verified by mass spectra and theoretical calculations, which was successfully applied in TPA cells imaging.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2015
In the title compound, C18H12N4O2, which has a delocalized D-π-A electronic structure, the dihedral angles between the central benzene ring and the planes of the pendant imidazole and nitro-benzene rings are 37.65 (9) and 4.96 (7)°, respectively.
View Article and Find Full Text PDFFibrous nanoaggregates of a new benzoxazole-based derivative have been reported. This derivative exhibits not only H-aggregates but also strong yellow fluorescence, which is different from the traditional understanding of H-aggregates.
View Article and Find Full Text PDFBy self-assembly of (E)-2-(3-(4-(1H-imidazol-1-yl)styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile (L(1)) and (E)-2-(3-(4-(1H-1,2,4-triazol-1-yl)styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile (L(2)) with silver(I) salts, eight new complexes, namely AgL(1)2ClO4 (1), AgL(1)2NO3 (2), [AgL(1)2NO3]·C6H6 (3), [AgL(1)2OOCCF3]·C6H6 (4), [AgL(1)2PF6]·C6H6 (5), AgL(2)2NO3 (6), [AgL(2)OOCCF3]2 (7) and AgL(2)2PF6 (8), are presented along with an analysis of their structural features. The structures are built up through the combination of coordination bonds, Ag···π, Ag···F (or O), hydrogen bonding, and π···π stacking interactions to generate new supramolecular architectures. We observed the formation of two-dimensional coordination polymers for complex 7.
View Article and Find Full Text PDFEight triphenylamine (TPA)-based Schiff bases that exhibit different aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) behavior in tetrahydrofuran (THF)/water mixtures have been synthesized and characterized. The photophysical properties in solution, aqueous suspension, film, and the crystalline state along with their relationships were comparatively investigated. The single-crystal structures of 1-8 indicate that compact π···π stacking or excimers induce fluorescence quenching of 1, 2, 5, and 7.
View Article and Find Full Text PDFA series of new isophorone derivatives (1-5), incorporating the heterocyclic ring or aza-crown-ether group, with large Stokes shifts (>140 nm), have been synthesized and characterized. 1-4 display aggregation-induced emission behaviors, while dye 5 is highly emissive in solution but quenched in the solid state. It was found that the tuning of emission color of the isophorone-based compounds in the solid state could be conveniently accomplished by changing the terminal substituent group.
View Article and Find Full Text PDF