Publications by authors named "Mingdi Sun"

Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising approach for efficient wastewater treatment. However, despite their promising potential, there is a lack of comprehensive analysis regarding the research trends, bibliometric data, and research frontiers of EAOPs. To address this gap, this study conducted a thorough and comprehensive analysis of 2347 related articles in the Web of Science Core Collection Database from 2012 to 2022.

View Article and Find Full Text PDF

This research has developed a method for rapid detection of SARS-CoV-2 N protein on a paper-based microfluidic chip. The chitosan-glutaraldehyde cross-linking method is used to fix the coated antibody, and the sandwich enzyme-linked immunosorbent method is used to achieve the specific detection of the target antigen. The system studied the influence of coating antibody concentration and enzyme-labeled antibody concentration on target antigen detection.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and photothermal therapy (PTT) are well-developed light therapy methods for cancer; however, both have a few areas that need improvement. A sustained PDT effect depends on the sustained generation of reactive oxygen species (ROS); therefore, adjusting the type of photosensitizer or the reaction mechanism to prolong the duration of the oxidation-reduction reaction is a possible solution for the continuation of the PDT effect. Further, if PTT could be combined with other treatments, it would bring about a more satisfactory therapeutic effect.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a light-based modality for tumor treatment that involves the generation of reactive oxygen species (ROS) by the combination of light, a photosensitizer, and molecular oxygen. Nevertheless, the therapeutic effects of PDT are limited by hypoxic conditions that worsen with oxygen consumption during the PDT process. Photo/chemodynamic therapy (PCDT) based on the Fenton reaction is one strategy to improve ROS generation, provided a highly effective Fenton reagent is developed.

View Article and Find Full Text PDF

808 nm near-infrared (NIR) light-induced biological theranostics is gradually becoming a popular method for cancer treatment. Meanwhile, mild synthetic methods to prepare medicines and gentle treatment conditions for cancer patients are becoming increasingly important to oncotherapy. Herein, tiny AgBiS nanodots were synthesized via a simple method, and for the first time, discovered to produce a photodynamic therapy (PDT) effect for cancer treatment under 808 nm laser irradiation, which was characterized by both chemical probe and intracellular reactive oxygen species (ROS) detection.

View Article and Find Full Text PDF

We theoretically and numerically demonstrate optimal design of wavelength selective thermal emitter using one-dimensional (1D) and two-dimensional (2D) metal-dielectric gratings for thermophotovoltaic (TPV) applications. Proposed design consists of tungsten (W) and silicon dioxide (SiO) gratings which can withstand high temperatures. Radiative properties of 1D grating were calculated using a numerical method, while effective medium approximation was used for 2D gratings.

View Article and Find Full Text PDF

Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). However, the NIR-induced PDT is greatly restricted by overheating issues on normal bodies and low yields of reactive oxygen species (ROS, O). Here, IR-808-sensitized upconversion nanoparticles (NaGdF:Yb,Er@NaGdF:Nd,Yb) were combined with mesoporous silica, which has Ce6 (red-light-excited photosensitizer) and MC540 (green-light-excited photosensitizer) loaded inside through covalent bond and electrostatic interaction, respectively.

View Article and Find Full Text PDF

Rare-earth-doped up-conversion nanoparticles (UCNPs), which are capable of converting infrared light to shorter-wavelength photons, have attracted worldwide attention due to their unique characteristics. However, the emission brightness of UCNPs is greatly limited by the unsatisfactory absorptivity of lanthanide ions. Herein, we adopted a novel strategy to enhance the up-conversion intensity using NIR dye IR-808 as an antenna to sensitize the core-shell-shell structured NaGdF:Yb,Er@NaGdF:Yb@NaNdF:Yb UCNPs.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the mitochondrial nicotinamide adenine dinucleotide hydride kinase Pos5p is required for a variety of essential cellular pathways, most importantly respiration. The Pos5p knockout strain pos5Δ grows poorly in non-fermentable media. A potential relationship between this respiratory deficiency and the ability of the cells to supply nicotinamide adenine dinucleotide phosphate (NADPH) was examined by analyzing the respiratory chain activity of pos5Δ and two NADP(+)-specific dehydrogenase mutants, idp1Δ and zwf1Δ.

View Article and Find Full Text PDF