Rice (Oryza sativa) is sensitive to low temperatures, which affects the yield and quality of rice. Therefore, uncovering the molecular mechanisms behind chilling tolerance is a critical task for improving cold tolerance in rice cultivars. Here, we report that OsWRKY63, a WRKY transcription factor with an unknown function, negatively regulates chilling tolerance in rice.
View Article and Find Full Text PDFCryptochromes are blue light receptors that regulate plant growth and development. They also act as the core components of the central clock oscillator in animals. Although plant cryptochromes have been reported to regulate the circadian clock in blue light, how they do so is unclear.
View Article and Find Full Text PDFCOP1/SPA1 complex in inhibits photomorphogenesis through the ubiquitination of multiple photo-responsive transcription factors in darkness, but such inhibiting function of COP1/SPA1 complex would be suppressed by cryptochromes in blue light. Extensive studies have been conducted on these mechanisms in whereas little attention has been focused on whether another branch of land plants bryophyte utilizes this blue-light regulatory pathway. To study this problem, we conducted a study in the liverwort and obtained a MpSPA knock-out mutant, in which Mp exhibits the phenotype of an increased percentage of individuals with asymmetrical thallus growth, similar to MpCRY knock-out mutant.
View Article and Find Full Text PDFBackground: The Northeast Plain of China, which is an important region for the production of high grain quality rice in China. However, the grain quality of the rice produced varies across this region, even for the same cultivar.
Objective: In order to explore the meteorological factors that have the greatest influence on quality and the transcriptional level differences between different cultivars and different locations at grain filling stage.
WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing (-OE) exhibited reduced drought resistance.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2021
Arabidopsis cryptochrome 2 (CRY2) and FLAVIN-BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) are blue light receptors mediating light regulation of growth and development, such as photoperiodic flowering. CRY2 interacts with a basic helix-loop-helix transcription factor CIB1 in response to blue light to activate the transcription of the flowering integrator gene FLOWERING LOCUS T (FT). CIB1, CIB2, CIB4, and CIB5 function redundantly to promote flowering in a CRY2-dependent way and form various heterodimers to bind to the noncanonical E-box sequence in the FT promoter.
View Article and Find Full Text PDFOVATE family proteins (OFPs) are plant-specific transcription factors that regulate plant growth and development. OFPs interact with 3-aa loop extension (TALE) homeodomain proteins and brassinosteroid (BR) signaling components to modulate gibberellic acid (GA) biosynthesis and BR responses. Bioactive GAs are essential in regulating plant organogenesis and organ growth by promoting cell differentiation and elongation.
View Article and Find Full Text PDFThe APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, , was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family.
View Article and Find Full Text PDFThis work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions.
View Article and Find Full Text PDFCryptochromes are blue light receptors regulated by light-dependent ubiquitination and degradation in both plant and animal lineages. The Arabidopsis genome encodes two cryptochromes, CRY1 and CRY2, of which CRY2 undergoes blue light-dependent ubiquitination and 26S proteasome-dependent degradation. The molecular mechanism regulating blue light-dependent proteolysis of CRY2 is still not fully understood.
View Article and Find Full Text PDFIn this study, we constructed dual-transgene vectors (pDT1, pDT7, and pDT7G) that simultaneously co-expressed two genes in plants. ACTIN2 and UBQ10 promoters were used to control the expression of these two genes. The 4×Myc, 3×HA, and 3×Flag reporter genes allowed for the convenient identification of a tunable co-expression system in plants, whereas the dexamethasone (Dex) inducible reporter gene C-terminus of the glucocorticoid receptor (cGR) provided Dex-dependent translocation of the fusion gene between the nucleus and cytoplasm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2015
Cryptochromes in different evolutionary lineages act as either photoreceptors or light-independent transcription repressors. The flavin cofactor of both types of cryptochromes can be photoreduced in vitro by electron transportation via three evolutionarily conserved tryptophan residues known as the "Trp triad." It was hypothesized that Trp triad-dependent photoreduction leads directly to photoexcitation of cryptochrome photoreceptors.
View Article and Find Full Text PDFArabidopsis cryptochrome 2 (CRY2) is a blue light receptor that mediates light inhibition of hypocotyl elongation and long-day promotion of floral initiation. CRY2 is known to undergo blue light-dependent phosphorylation, which is believed to serve regulatory roles in the function of CRY2. We report here on a biochemical and genetics study of CRY2 phosphorylation.
View Article and Find Full Text PDFThe Arabidopsis ovate family proteins (AtOFPs) have been shown to function as transcriptional repressors and regulate multiple aspects of plant growth and development. There are 31 genes that encode the full-length OVATE-domain containing proteins in the rice genome. In this study, the gene structure analysis revealed that OsOFPs are intron poor.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2011
Calcineurin B-like proteins play important roles in the calcium perception and signal transduction of abiotic stress. In this study, the bioinformatic analysis of molecular characteristics of Sorghum bicolor calcineurin B-like protein (SbCBL) revealed that sequences of SbCBL are highly conserved, and most SbCBLs have three typical EF-hands structures. Among the SbCBL proteins, four of which, SbCBL01, 04, 05, 08, have a conserved N-myristoylation domain.
View Article and Find Full Text PDF