Ovarian cancer ranks as a leading cause of mortality among gynecological malignancies, primarily due to the lack of early diagnostic tools, effective targeted therapy, and clear understanding of disease etiology. Previous studies have identified the pivotal role of Lysophosphatidic acid (LPA)-signaling in ovarian cancer pathobiology. Our earlier transcriptomic analysis identified Urothelial Carcinoma Associated-1 (UCA1) as an LPA-stimulated long non-coding RNA (lncRNA).
View Article and Find Full Text PDFIncreased expression of , which encodes the α-subunit of G-protein i2, has been correlated with the late-stage progression of ovarian cancer. , also referred to as the proto-oncogene , transduces signals from lysophosphatidic acid (LPA)-activated LPA-receptors to oncogenic cellular responses in ovarian cancer cells. To identify the oncogenic program activated by , we carried out micro-array-based transcriptomic and bioinformatic analyses using the ovarian cancer cell-line SKOV3, in which the expression of / was silenced by specific shRNA.
View Article and Find Full Text PDFWith the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/ has previously been characterized, the global transcriptomic network regulated by in ovarian cancer pathophysiology remains largely unknown.
View Article and Find Full Text PDFThymoquinone, a therapeutic phytochemical derived from Nigella sativa, has been shown to have a potent anticancer activity. However, it has been identified that the tumor microenvironment (TME) can attenuate the anticancer effects of thymoquinone (TQ) in ovarian cancer. Lysophosphatidic acid (LPA), a lipid growth factor present in high concentration in the TME of ovarian cancer, has been shown to regulate multiple oncogenic pathways in ovarian cancer.
View Article and Find Full Text PDFAlthough hypoxia has been shown to reprogram cancer cells toward glycolytic shift, the identity of extrinsic stimuli that induce metabolic reprogramming independent of hypoxia, especially in ovarian cancer, is largely unknown. In this study, we use patient-derived ovarian cancer cells and high-grade serous ovarian cancer cell lines to demonstrate that lysophosphatidic acid (LPA), a lipid growth factor and GPCR ligand whose levels are substantially increased in ovarian cancer patients, triggers glycolytic shift in ovarian cancer cells. Inhibition of the G protein α-subunit Gαi2 disrupted LPA-stimulated aerobic glycolysis.
View Article and Find Full Text PDFWith the goal of identifying diagnostic and prognostic biomarkers in endometrial cancer, miRNA-profiling was carried out with formalin-fixed paraffin embedded (FFPE) tissue samples from 49 endometrial cancer patients. Results using an 84-cancer specific miRNA panel identified the upregulation of miR-141-3p and miR-96-5p along with a downregulation of miR-26, miR-126-3p, miR-23b, miR-195-5p, miR-374a and let-7 family of miRNAs in endometrial cancer. We validated the dysregulated expression of the identified miRNAs in a panel of endometrial cancer cell-lines.
View Article and Find Full Text PDFOvarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling.
View Article and Find Full Text PDFRecent studies have shown that the gip2 and gep oncogenes defined by the α-subunits of Gi2 and G12 family of G proteins, namely Gαi2 and Gα12/13, stimulate oncogenic signaling pathways in cancer cells including those derived from ovarian cancer. However, the critical α-subunit involved in ovarian cancer growth and progression in vivo remains to be identified. Using SKOV3 cells in which the expressions of individual Gα-subunits were silenced, we demonstrate that the silencing of Gα12 and Gα13 drastically attenuated serum- or lysophosphatidic acid-stimulated proliferation.
View Article and Find Full Text PDFThe G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis.
View Article and Find Full Text PDFAutophagy is a membrane trafficking pathway that sequesters proteins and organelles into autophagosomes. The selectivity of this pathway is determined by autophagy receptors, such as the Pichia pastoris autophagy-related protein 30 (Atg30), which controls the selective autophagy of peroxisomes (pexophagy) through the assembly of a receptor protein complex (RPC). However, how the pexophagic RPC is regulated for efficient formation of the phagophore, an isolation membrane that sequesters the peroxisome from the cytosol, is unknown.
View Article and Find Full Text PDFYarrowia lipolytica Pex23p and Saccharomyces cerevisiae Pex30p, Pex31p, and Pex32p comprise a family of dysferlin domain-containing peroxins. We show that the deletion of their Pichia pastoris homologues, PEX30 and PEX31, does not affect the function or division of methanol-induced peroxisomes but results in fewer and enlarged, functional, oleate-induced peroxisomes. Synthesis of Pex30p is constitutive, whereas that of Pex31p is oleate-induced but at a much lower level relative to Pex30p.
View Article and Find Full Text PDFWith the approaching completion of the Pichia pastoris genome, a greater emphasis will have to be placed on the proteome and the protein-protein interactions between its constituents. This chapter discusses methods that have been used for the study of such interactions among both soluble and membrane-associated proteins in peroxisome biogenesis. The procedures are equally applicable to other cellular processes.
View Article and Find Full Text PDFGrowth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate.
View Article and Find Full Text PDFCurr Opin Cell Biol
August 2005
Like other subcellular organelles, peroxisomes divide and segregate to daughter cells during cell division, but this organelle can also proliferate or be degraded in response to environmental cues. Although the mechanisms and genes involved in these processes are still under active investigation, an important player in peroxisome proliferation is a dynamin-related protein (DRP) that is recruited to the organelle membrane by a DRP receptor. Related DRPs also function in the division of mitochondria and chloroplasts.
View Article and Find Full Text PDFThe 90-kDa heat shock protein (Hsp90) is the most abundant molecular chaperone in eukaryotic cells. Hsp90 plays a critical role in regulating signal transduction pathways that control cell proliferation since its chaperone function is restricted to a subset of proteins including some signal molecules. Improper function of these proteins can be induced by an anti-tumor agent geldanamycin (GA) which is the specific inhibitor of Hsp90.
View Article and Find Full Text PDFTelomerase is an important ribonucleoprotein enzyme involved in cellular proliferation and senescence. Activation of telomerase has been detected in a vast majority of human cancer cells. In this article, we demonstrated that Interleukin-2 (IL-2) which is the pivotal cytokine in the immune system could stimulate the activity of telomerase in the cultured BA/F3beta cells.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 2000
Redox factor-1 (Ref-1) is a bifunctional protein playing an important role in both cellular redox regulation and DNA apurinic/apyrimidinic sites' repair. To find Ref-1interacting proteins (Rips), a yeast two-hybrid screening was performed by using Ref-1 redox domain as the 'bait', and five positive clones were obtained. One of them (Rip3) was identified to be the ubiquitin-conjugating enzyme Ubc9.
View Article and Find Full Text PDF