It was revealed in our previous study that the expression of miR-30c-5p in the skeletal muscle of rabbits fed high-fat diet was highly expressed. In the present study, we further investigated the function of miR-30c-5p in proliferation and differentiation of skeletal muscle satellite cell (SMSC). The results obtained in the present study showed that the skeletal muscle fibers of the rabbits fed the standard normal diet (SND) were orderly, regular, and uniform after HE staining, however, the muscle fibers of the rabbits fed the high-fat diet (HFD) were generally atrophied, some were arranged disorderly, the intercellular space was enlarged, the nucleus was increased, and the morphology and position were abnormal.
View Article and Find Full Text PDFA high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes.
View Article and Find Full Text PDFFatty acids of intramuscular fat (IMF) in rabbits can influence meat quality, but it is unclear which fatty acids benefit to human health. A rabbit model of weight gain and weight loss was constructed using two rabbit groups and two growth stages. Stage 1 included control group1 fed a commercial diet(CG1) and experimental group1 fed a high fat diet (EG1).
View Article and Find Full Text PDFType 2 diabetes and metabolic syndrome caused by a high fat diet (HFD) have become public health problems worldwide. These diseases are characterized by the oxidation of skeletal muscle mitochondria and disruption of insulin resistance, but the mechanisms are not well understood. Therefore, this study aims to reveal how high-fat diet causes skeletal muscle metabolic disorders.
View Article and Find Full Text PDFmicroRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
March 2021
This study aimed to determine whether high-fat diet (HFD) could cause growth, behavioural, biochemical and morphological changes in young female rabbits. Thirty-six female rabbits were randomly divided into two groups fed with either a high-fat diet (HFD) or a standard normal diet (SND) for 5 weeks. Growth and behavioural changes were recorded during the 5-week feeding period.
View Article and Find Full Text PDF