The positioning of quantum dots (QDs) in nanowires (NWs) on-axis has emerged as a controllable method of QD fabrication that has given rise to structures with exciting potential in novel applications in the field of Si photonics. In particular, III-V NWQDs attract a great deal of interest owing to their vibrant optical properties, high carrier mobility, facilitation in integration with Si and bandgap tunability, which render them highly versatile. Moreover, unlike Stranski-Krastanov or self-assembled QDs, this configuration allows for deterministic position and size of the dots, enhancing the sample uniformity and enabling beneficial functions.
View Article and Find Full Text PDFSuppression of threading dislocations (TDs) in thin germanium (Ge) layers grown on silicon (Si) substrates has been critical for realizing high-performance Si-based optoelectronic and electronic devices. An advanced growth strategy is desired to minimize the TD density within a thin Ge buffer layer in Ge-on-Si systems. In this work, we investigate the impact of P dopants in 500-nm thin Ge layers, with doping concentrations from 1 to 50 × 10 cm.
View Article and Find Full Text PDFRobust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers.
View Article and Find Full Text PDFSemiconductor mode-locked optical frequency comb (ML-OFC) sources with extremely high repetition rates are central to many high-frequency applications, such as dense wavelength-division multiplexing. Dealing with distortion-free amplification of ultra-fast pulse trains from such ML-OFC sources in high-speed data transmission networks requires the deployment of semiconductor optical amplifiers (SOAs) with ultrafast gain recovery dynamics. Quantum dot (QD) technology now lies at the heart of many photonic devices/systems owing to their unique properties at the O-band, including low alpha factor, broad gain spectrum, ultrafast gain dynamics, and pattern-effect free amplification.
View Article and Find Full Text PDFOptical resonant cavities with high quality factor (Q-factor) are widely used in science and technology for their capabilities of strong confinement of light and enhanced light-matter interaction. The 2D photonic crystal structure with bound states in the continuum (BICs) is a novel concept for resonators with ultra-compact device size, which can be used to generate surface emitting vortex beams based on symmetry-protected BICs at the Γ point. Here, to the best of our knowledge, we demonstrate the first photonic crystal surface emitter with a vortex beam by using BICs monolithically grown on CMOS-compatible silicon substrate.
View Article and Find Full Text PDFLight Sci Appl
January 2023
The realisation of on-chip light sources paves the way towards the full integration of Si-based photonic integrated circuits (PICs).
View Article and Find Full Text PDFThe quantum-confined Stark effect in InAs/In(Ga)As quantum dots (QDs) using non-intentionally doped and p-doped QD barriers was investigated to compare their performance for use in optical modulators. The measurements indicate that the doped QD barriers lead to a better figure of merit (FoM), defined as the ratio of the change in absorption Δα for a reverse bias voltage swing to the loss at 1 V α(1 V), FoM=Δα/α (1 V). The improved performance is due to the absence of the ground-state absorption peak and an additional component to the Stark shift.
View Article and Find Full Text PDFHigh-power, broadband quantum-dot (QD) superluminescent diodes (SLDs) are ideal light sources for optical coherence tomography (OCT) imaging systems but have previously mainly been fabricated on native GaAs- or InP-based substrates. Recently, significant progress has been made to emigrate QD SLDs from native substrates to silicon substrates. Here, we demonstrate electrically pumped continuous-wave InAs QD SLDs monolithically grown on silicon substrates with significantly improved performance thanks to the achievement of a low density of defects in the III-V epilayers.
View Article and Find Full Text PDFAn InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15-31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied.
View Article and Find Full Text PDFSemiconductor III-V photonic crystal (PC) laser is regarded as a promising ultra-compact light source with unique advantages of ultralow energy consumption and small footprint for the next generation of Si-based on-chip optical interconnects. However, the significant material dissimilarities between III-V materials and Si are the fundamental roadblock for conventional monolithic III-V-on-silicon integration technology. Here, we demonstrate ultrasmall III-V PC membrane lasers monolithically grown on CMOS-compatible on-axis Si (001) substrates by using III-V quantum dots.
View Article and Find Full Text PDFThe first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth techniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE.
View Article and Find Full Text PDFThe integration of optically active III-V and electronic-suitable IV materials on the same nanowire could provide a great potential for the combination of photonics and electronics in the nanoscale. In this Letter, we demonstrate the growth of GaAs/Ge core-shell nanowires on Si substrates by molecular beam epitaxy and investigate the radial and axial Ge epitaxy on GaAs nanowires in detail. High-quality core-shell nanowires with smooth side facets and dislocation-free, sharp interfaces are achieved.
View Article and Find Full Text PDFHigh-performance injection microdisk (MD) lasers grown on Si substrate are demonstrated for the first time, to the best of our knowledge. Continuous-wave (CW) lasing in microlasers with diameters from 14 to 30 μm is achieved at room temperature. The minimal threshold current density of 600 A/cm (room temperature, CW regime, heatsink-free uncooled operation) is comparable to that of high-quality MD lasers on GaAs substrates.
View Article and Find Full Text PDFWe report on the first electrically pumped continuous-wave (cw) InAs/GaAs quantum dot (QD) lasers monolithically grown on on-axis Si (001) substrates without any intermediate buffer layers. A 400 nm antiphase boundary (APB) free epitaxial GaAs film with a small root-mean-square (RMS) surface roughness of 0.86 nm was first deposited on a 300 mm standard industry-compatible on-axis Si (001) substrate by metal-organic chemical vapor deposition (MOCVD).
View Article and Find Full Text PDFBobby sox homolog (Bbx) is an evolutionally conserved gene, but its biological function remains elusive. Here, we characterized defects of Bbx mutant rats that were created by PiggyBac-mediated insertional mutagenesis. Smaller body size and male infertility were the two major phenotypes of homozygous Bbx mutants.
View Article and Find Full Text PDFThe addition of elevated temperature steps (annealing) during the growth of InAs/GaAs quantum dot (QD) structures on Si substrates results in significant improvements in their structural and optical properties and laser device performance. This is shown to result from an increased efficacy of the dislocation filter layers (DFLs); reducing the density of dislocations that arise at the Si/III-V interface which reach the active region. The addition of two annealing steps gives a greater than three reduction in the room temperature threshold current of a 1.
View Article and Find Full Text PDFWe report the first InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) monolithically grown on a Ge substrate by molecular beam epitaxy. The QD SLD exhibits a 3 dB emission bandwidth of ~60 nm centered at 1252 nm with output power of 27 mW at room temperature. The 3 dB bandwidth is very stable over the temperature range from 20 °C to 100 °C, which highlights the potential for integration with high performance ICs.
View Article and Find Full Text PDFThe growth of self-catalyzed ternary core-shell GaAsP nanowire (NW) arrays on SiO2 patterned Si(111) substrates has been demonstrated by using solid-source molecular beam epitaxy. A high-temperature deoxidization step up to ∼ 900 °C prior to NW growth was used to remove the native oxide and/or SiO2 residue from the patterned holes. To initiate the growth of GaAsP NW arrays, the Ga predeposition used for assisting the formation of Ga droplets in the patterned holes, was shown to be another essential step.
View Article and Find Full Text PDFThe hybrid structure of GaAs/GaAsSb quantum well (QW)/InAs quantum dots solar cells (QDSCs) is analyzed using power-dependent and temperature-dependent photoluminescence. We demonstrate that placing the GaAsSb QW beneath the QDs forms type-II characteristics that initiate at 12% Sb composition. Current density-voltage measurements demonstrate a decrease in power efficiency with increasing Sb composition.
View Article and Find Full Text PDFWe compare InAlAs/GaAs and InGaAs/GaAs strained-layer superlattices (SLSs) as dislocation filter layers for 1.3-μm InAs/GaAs quantum-dot laser structures directly grown on Si substrates. InAlAs/GaAs SLSs are found to be more effective than InGaAs/GaAs SLSs in blocking the propagation of threading dislocations generated at the interface between the GaAs buffer layer and the Si substrate.
View Article and Find Full Text PDFWe present the wafer-scale fabrication of self-catalyzed p-n homojunction 1.7 eV GaAsP core-shell nanowire photocathodes grown on silicon substrates by molecular beam epitaxy with the incorporation of Pt nanoparticles as hydrogen evolution cocatalysts. Under AM 1.
View Article and Find Full Text PDFWe report the first room-temperature continuous-wave operation of III-V quantum-dot laser diodes monolithically grown on a Si substrate. Long-wavelength InAs/GaAs quantum-dot structures were fabricated on Ge-on-Si substrates. Room-temperature lasing at a wavelength of 1.
View Article and Find Full Text PDFAgaricus blazei Murrill (ABM) popularly known as 'Cogumelo do Sol' in Brazil, or 'Himematsutake' in Japan, is a mushroom native to Brazil and widely cultivated in Japan for its medicinal uses and is now considered one of the most important edible and culinary-medicinal biotechnological species. This study is the first tumor growth model to evaluate the amelioratory effect of ABM extract using HT-29 human colon cancer cells in severe combined immunodeficiency (SCID) mice. Forty SCID mice were inoculated with HT-29 cells to induce tumor formation and were then divided into four groups.
View Article and Find Full Text PDFAgaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group.
View Article and Find Full Text PDF