Publications by authors named "Mingchi Ju"

Low-dose X-CT scanning method effectively reduces radiation hazards, however, reducing the radiation dose will introduce noise and artifacts during the projection process, resulting in a decrease in the quality of the reconstructed image. To address this problem, we combined 2D variational modal decomposition and dictionary learning. We proposed a low-dose CT (LDCT) image denoising algorithm based on an improved K-SVD algorithm with image decomposition.

View Article and Find Full Text PDF

Fast computational ghost imaging with high quality and ultra-high-definition resolution reconstructed images has important application potential in target tracking, biological imaging and other fields. However, as far as we know, the resolution (pixels) of the reconstructed image is related to the number of measurements. And the limited resolution of reconstructed images at low measurement times hinders the application of computational ghost imaging.

View Article and Find Full Text PDF

High-quality imaging under low sampling time is an important step in the practical application of computational ghost imaging (CGI). At present, the combination of CGI and deep learning has achieved ideal results. However, as far as we know, most researchers focus on one single pixel CGI based on deep learning, and the combination of array detection CGI and deep learning with higher imaging performance has not been mentioned.

View Article and Find Full Text PDF