Background: Vital pulp therapy (VPT) has recently been reported as an effective approach for preventing and treating carious pulp injury in permanent teeth. Compared with root canal treatment (RCT), which involves complete removal of the pulp tissue, VPT effectively maintains pulp vitality and retains the physiological functions of the pulp. In the research pool, large-scale randomized controlled trials evaluating the treatment outcome of VPT using calcium silicate cements and RCT in cariously exposed permanent teeth are lacking.
View Article and Find Full Text PDFTime-resolved angle-resolved photoemission spectroscopy (Tr-APRES) gives direct insight into electron dynamics by providing temporal-, energy-, and momentum-resolved information in one experiment. A major obstacle to using high harmonic generation (HHG) probe pulses for photoemission spectroscopy is the low conversion efficiency, that is, the low flux of probe photons. We use a Yb-KGW based duo-laser source with an oscillator to pump two separate amplifiers and generate two synchronized pulsed laser sources with average energies of 7.
View Article and Find Full Text PDFWe generate 1.7-cycle and 35-µJ pulses at a 1-MHz repetition rate by using two-stage multiple plate continuum compression of Yb-laser pulses with 80-W average input power. By adjusting the plate positions with careful consideration of the thermal lensing effect due to the high average power, we compress the output pulse with a 184-fs initial duration to 5.
View Article and Find Full Text PDFFour undescribed polyhydroxy cyclohexanes, fissoxhydrylenes A-D (1-4), together with two known biogenetically related polyhydroxy cyclohexanes (5 and 6) were isolated from the stems of Fissistigma tientangense Tsiang et P. T. Li.
View Article and Find Full Text PDFSingle-atom tips (SATs) have crucial scientific and technological applications, such as in scanning probe microscopy and charged particle beam technology. We reported a reliable method of preparing and regenerating noble metal-covered W(111) SATs through laser annealing at approximately 1000 K under ultrahigh vacuum. The field emission patterns obtained during laser heating revealed the self-assembly process of a pyramidal tip.
View Article and Find Full Text PDFThe advancement of contemporary ultrafast science requires reliable sources to provide high-energy few-cycle light pulses. Through experiments and simulations, we demonstrate an arrangement of pulse postcompression, referred to as cascaded focus and compression (CASCADE), for generating millijoule-level, single-cycle pulses in a compact fashion. CASCADE is realized by a series of foci in matter, whereas pulse compression is provided immediately after each focus to maintain a high efficiency of spectral broadening.
View Article and Find Full Text PDFWe demonstrate spatially resolved supercontinuum spectral phase interferometry with an isolated attosecond pulse (IAP). The measured spatial-spectral interferogram over the broadband region indicates a high degree of IAP coherence in both spatial and spectral domains. In addition, the spectral-delay interferogram shows periodic temporal oscillations over the full IAP continuous spectrum, which indicates high temporal coherence.
View Article and Find Full Text PDFGeneration of octave-spanning spectrum that spans from 570 nm to 1300 nm utilizing 1030 nm 170 fs pulses from a Yb:KGW laser and a two-stage multiple-plate arrangement is demonstrated. 3.21 fs sub-single-cycle pulses are obtained after dispersion compensation.
View Article and Find Full Text PDFWe extend a recently demonstrated scheme [Optica4, 976 (2017)OPTIC82334-253610.1364/OPTICA.4.
View Article and Find Full Text PDFRecent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV. Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K- and L-absorption edges of solids at photon energies near 1 keV.
View Article and Find Full Text PDFWe have developed an extreme ultraviolet (EUV) scatterometer based on the analysis of coherent EUV light diffracted from a periodic array with nano-scale features. We discuss the choice of appropriate orders of the high harmonics generated coaxially along with the intense Ti:sapphire laser pulses for high resolution spatial performance. We describe an inverse-problem methodology for determining the structural parameters, and present preliminary measurement results confirming the functionality of the scatterometer.
View Article and Find Full Text PDFHigh-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used.
View Article and Find Full Text PDFScattering and absorption limit light penetration through inhomogeneous tissue. To reduce scattering, biochemists have shifted the wavelengths of excitation light for optogenetic actuators and fluorescent proteins to the orange-red range, while physicists have developed multiphoton technologies for deep tissue stimulation. We have built a rapid multiphoton spectroscopic screening system of genetically encoded red-activatable channelrhodopsin (ReaChR), and considered specific behaviors in transgenic Drosophila melanogaster as readouts to optimize the laser parameters for two-photon optogenetic activation.
View Article and Find Full Text PDFIEEE Trans Cybern
October 2014
In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems.
View Article and Find Full Text PDFHigh harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses.
View Article and Find Full Text PDFA single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits.
View Article and Find Full Text PDFMolecular dynamics simulation was employed to investigate the diffusion behaviors of water molecules within a (5,5) carbon nanocoil (CNC) at different tensile strains, the length and coil diameter of CNC are 22 and 6.83 Ǻ, respectively. Condensed-phase, optimized molecular potentials for atomistic simulation studies were employed to model the interaction between atoms.
View Article and Find Full Text PDFWe propose a noniterative data inversion process for the phase retrieval by omega oscillating filtering method that could measure both isolated attosecond pulses and periodic optical arbitrary waveform (OAW). The built-in phase modulation depth recovery not only prevents the need of independent calibration (a critical advantage in the extreme ultraviolet regime) but provides a self-consistency check for the data integrity. Our experiments successfully retrieved OAW with ~100% duty cycle in the near infrared regime.
View Article and Find Full Text PDFThe complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C.
View Article and Find Full Text PDFThe mitochondrial genome (mitogenome) of Leucoptera malifoliella (=L. scitella) (Lepidoptera: Lyonetiidae) was sequenced. The size was 15,646 bp with gene content and order the same as those of other lepidopterans.
View Article and Find Full Text PDFHigh-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.
View Article and Find Full Text PDFWe demonstrate a compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs (<7 optical cycles). Because of the long optical period (∼13 fs) and a high peak power, the system opens a range of unprecedented opportunities for tabletop ultrafast science and is particularly attractive as a driver for a highly efficient generation of ultrafast coherent x-ray continua for biomolecular and element specific imaging.
View Article and Find Full Text PDFWe show how bright, tabletop, fully coherent hard X-ray beams can be generated through nonlinear upconversion of femtosecond laser light. By driving the high-order harmonic generation process using longer-wavelength midinfrared light, we show that, in theory, fully phase-matched frequency upconversion can extend into the hard X-ray region of the spectrum. We verify our scaling predictions experimentally by demonstrating phase matching in the soft X-ray region of the spectrum around 330 eV, using ultrafast driving laser pulses at 1.
View Article and Find Full Text PDF