Publications by authors named "MingYao Liu"

Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • G protein-coupled receptor 4 (GPR4) is part of a group called proton-sensing GPCRs that respond to pH changes and regulate various physiological functions, with its overactivation noted in acidic tumor environments.
  • Researchers used cryo-electron microscopy to determine the 3D structures of zebrafish GPR4 at different pH levels, revealing important histidine and acidic residues that affect its proton-sensing ability, alongside key triad residues.
  • The study also identified a cluster of aromatic residues in GPR4's orthosteric pocket that may play a crucial role in transferring signals to the inside of the cell, laying the groundwork for further research on psGPCRs.
View Article and Find Full Text PDF

Interferon regulatory factor 4 (IRF4) is specifically overexpressed in multiple myeloma (MM) and mediates MM progression and survival, making it an emerging target for MM treatment. However, no chemical entity with a defined structure capable of directly binding to and inhibiting IRF4 has been reported. We screened our small library of steroid analogs and identified bisnoralcohol (BA) derivative 18 as a novel hit compound capable of inhibiting IRF4, with an IC of 13.

View Article and Find Full Text PDF

The development of dual prostaglandin E receptors 2/4 (EP2/EP4) antagonists represents an attractive strategy for cancer immunotherapy. Herein, a series of 4,7-dihydro-5-thieno[2,3-]pyran derivatives with potent EP2/EP4 dual antagonism were discovered by fine-tuned structural modifications. The biphenyl side chain was found to be the key pharmacophore for the transition from EP4 antagonism to EP2/EP4 dual antagonism.

View Article and Find Full Text PDF

Synthetic CB2 receptor agonists exhibit great potential in the treatment of neurodegenerative diseases, chronic and neuropathic pain, cancer, and inflammation-associated pathologies while avoiding adverse psychoactive effects caused by interactions with CB1 receptors. Herein, a class of 5-aryl-pyrazole-3-carboxamide derivatives was thus designed, synthesized, and biologically evaluated. Among the compounds tested, compound 33, one of the most potent leads, showed a remarkably high potency and selectivity at the CB2 receptor (EC = 16.

View Article and Find Full Text PDF

Ovarian cancer, a leading cause of gynecological cancer deaths globally, poses significant treatment challenges. Cisplatin (CDDP) is the first treatment choice for ovarian cancer and it is initially effective. However, 80% of ovarian cancer patients eventually relapse and develop resistance, resulting in chemotherapy failure.

View Article and Find Full Text PDF

Background: Activation of multiple programmed cell death (PCD) pathways has been reported in cellular and animal studies of ischemia/reperfusion injury in lung transplantation. However, the status of these pathways in human lung transplants remains unknown. This study investigates the involvement of PCD pathways and their relationship with inflammation and signaling pathways in human lung transplants.

View Article and Find Full Text PDF
Article Synopsis
  • - The BCL6 transcription factor is crucial for germinal center (GC) formation, and its dysregulation is linked to the development of diffuse large B cell lymphoma (DLBCL) due to its role in the GC reaction.
  • - Researchers have developed a new class of [1,2,4] triazolo[1,5-a] pyrimidine derivatives, particularly WK692, that specifically targets the interaction between BCL6 and its co-repressor, SMRT.
  • - WK692 has shown promising results by inhibiting DLBCL growth and inducing apoptosis in vitro, while also demonstrating safety in vivo, suggesting it could be a potential new anticancer treatment for DLBCL when combined with other
View Article and Find Full Text PDF
Article Synopsis
  • Primary hyperoxaluria type 1 (PH1) is a severe genetic disorder caused by AGXT gene mutations, leading to dangerous oxalate buildup, kidney damage, and renal failure.
  • Current therapies like siRNA and CRISPR-Cas9 have limitations, including the need for repeated treatments and safety issues.
  • The study introduces lipid nanoparticles (LNPs) for CRISPR-Cas9 delivery, effectively targeting the Hao1 gene, which decreased oxalate levels in mice with PH1, showing efficacy and long-lasting effects without significant side effects, indicating a safer treatment option for PH1.
View Article and Find Full Text PDF

Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases.

View Article and Find Full Text PDF

Objectives: Hypothermic lung preservation at 10 °C has been recently shown to enhance quality of healthy donor lungs during ischemia. This study aims to show generalizability of the 10 °C lung preservation using an endotoxin-induced lung injury with specific focus on the benefits of post-transplant lung function and mitochondrial preservation.

Methods: Lipopolysaccharide (3 mg/kg) was injected intratracheally in rats to induce lung injury.

View Article and Find Full Text PDF

Ischemia-reperfusion is an unavoidable step of organ transplantation. Development of therapeutics for lung injury during transplantation has proved challenging; understanding lung injury from human data at the single-cell resolution is required to accelerate the development of therapeutics. Donor lung biopsies from 6 human lung transplant cases were collected at the end of cold preservation and 2-hour reperfusion and underwent single-cell RNA sequencing.

View Article and Find Full Text PDF

Objective: Previous reports showed enhanced graft function in both healthy and injured porcine lungs after preservation at 10 °C. The objective of the study is to elucidate the mechanism of lung protection by 10 °C and identify potential therapeutic targets to improve organ preservation.

Methods: Metabolomics data were analyzed from healthy and injured porcine lungs that underwent extended hypothermic preservation on ice and at 10 °C.

View Article and Find Full Text PDF

The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.

View Article and Find Full Text PDF

Background: Concern of ischemia-reperfusion injury reduces utilization of donor lungs. We hypothesized adding L-alanyl-L-glutamine (L-AG) to preservation solution may protect donor lungs from ischemia-reperfusion injury through its multiple cytoprotective effects.

Methods: A lung transplantation cell culture model was used on human lung epithelial cells and pulmonary microvascular endothelial cells, and the effects of adding different concentrations of L-AG on basic cellular function were tested.

View Article and Find Full Text PDF

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.

View Article and Find Full Text PDF

Introduction: Carbon monoxide (CO) has been shown to exert protective effects in multiple organs following ischemic injury, including the lung. The purpose of this study was to examine the effects of CO administration during ex vivo lung perfusion (EVLP) on lung grafts exposed to prolonged cold ischemia.

Methods: Ten porcine lungs were subjected to 18 h of cold ischemia followed by 6 h of EVLP.

View Article and Find Full Text PDF

The human lung is a complex organ that comprises diverse populations of epithelial, mesenchymal, vascular, and immune cells, which gains even greater complexity during disease states. To effectively study the lung at a single-cell level, a dissociation protocol that achieves the highest yield of viable cells of interest with minimal dissociation-associated protein or transcription changes is key. Here, we detail a rapid collagenase-based dissociation protocol (Col-Short) that provides a high-yield single-cell suspension that is suitable for a variety of downstream applications.

View Article and Find Full Text PDF

Purpose: Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability.

View Article and Find Full Text PDF