Ultra-narrowband multiple resonance (MR) emitters are a key component in the fabrication of highly efficient and stable blue organic light-emitting diodes (OLEDs). To explore the theoretical boundaries of wavelength and full width at half maximum (FWHM) in blue emitters, the currently narrowest boron-based MR emitter is carefully designed by integrating the superior v-DABNA and BBCz-DB structures under the auspices of the ingenious short-range charge-transfer region regulation strategy. The target tetraboron compound TB-PB demonstrates a blue emission with an emission maximum of 473 nm, a small FWHM of 12 nm and a CIEy coordinate of 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Despite the proliferation of multiple resonance (MR) materials in the blue to green spectral ranges, red MR emitters remain scarce in the literature, an area that certainly warrants attention for future applications. Here, through a clever application of classic Clar's aromatic π-sextet rule, we triumphantly constructed the first red MR emitter by substituting the conventional benzene ring core with anthracene (fewer π-sextets). Theoretical studies indicate that the quantity of π-sextets ultimately determines the optical band gap of a molecule, rather than the number of fused benzene rings.
View Article and Find Full Text PDFDespite theoretical difficulties, we herein demonstrate an effective strategy for the inaugural synthesis of an orange-red multiple resonance (MR) emitter centered on a pyridine ring stereo effects. Compared to conventional benzene-centered materials, the pyridine moiety in the novel MR material acts as a co-acceptor. This results in a significant spectral redshift and a narrower spectrum, as well as an improved photoluminescence quantum yield (PLQY) due to the formation of intramolecular hydrogen bonds.
View Article and Find Full Text PDFNarrowband emissive multiple resonance (MR) emitters promise high efficiency and stability in deep-blue organic light-emitting diodes (OLEDs). However, the construction of ideal ultra-narrow-band deep-blue MR emitters still faces formidable challenges, especially in balancing bathochromic-shift emission, spectral narrowing, and aggregation suppression. Here, DICz is chosen, which possesses the smallest full-width-at-half-maximum (FWHM) in MR structures, as the core and solved the above issue by tuning its peripheral substitution sites.
View Article and Find Full Text PDFExtending the π-skeletons of multi-resonance (MR) organoboron emitters can feasibly modulate their optoelectronic properties. Here, we first adopt the indolo[3,2-b]indole (32bID) segment as a multi-nitrogen bridge and develop a high-efficiency π-extended narrowband green emitter. This moiety establishes not only a high-yield one-shot multiple Bora-Friedel-Crafts reaction towards a π-extended MR skeleton, but a compact N-ethylene-N motif for a red-shifted narrowband emission.
View Article and Find Full Text PDFPolycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.
View Article and Find Full Text PDFMultiresonance (MR) molecules generally face spectral broadening issues with redshifted emissions. Thus, green emitters with full widths at half maximum (FWHMs) of <20 nm are rarely reported, despite being highly desired. Herein, by properly fusing indolo(3,2,1-jk)carbazole (ICZ) and naphthalene moieties, green MR emitters are reported, which have FWHMs of merely 13 nm (0.
View Article and Find Full Text PDFThe pursuit of ideal narrowband yellow multiple resonance (MR) emitters is hampered by the mutual constraints of effective spectral redshift and maintaining a small full width at half maximum (FWHM) value. Here, a novel multiple fusion molecular design strategy is reported to break this trade-off. Compared with the selected narrowband parent core, the specific multiple MR effects in target molecules can simultaneously extend the π-conjugation length, increase the rigidity of the structure, and reduce the vibrational frequency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
A novel macrocycle of B/N-doped calix[4]arene (C-BN) was synthesized by a one-shot double boronation. Owing to the structural tension and electron-donating properties of the nitrogen atoms in the macrocycle, reaction selectively proceeds between the adjacent benzene rings outside the macrocycle. C-BN shows a highly centrosymmetric structure with two multiple resonance (MR) fragments bridged by tertiary amine groups at the 1,3 positions of the benzene ring.
View Article and Find Full Text PDFDevelopment of pure organic molecular materials with room temperature phosphorescence (RTP) and their applications for white emitters have received significant attentions recently. Herein, a D-π-A molecule (DMACPPY) which can realize white emitting under ambient conditions both in the crystal state and the doped-film state by combining RTP with two fluorescent emissions is reported. The white emission from the crystalline sample of DMACPPY consists fluorescence from S (the second excited singlet state) and S (the first excited singlet state) along with RTP from T (the first excited triplet state), namely, SST-type white light.
View Article and Find Full Text PDFThe diallene-containing compound was unexpectedly obtained by the unconventional transformation of two carbonyl groups in 4,4',5,5'-tetrachloro-10,10'-[9,9'-bianthracenylidene]-10,10'-dione into diallenes. In addition, the two 1-triisopropylsilyl (TIPS) groups in were easily removed to yield . The reaction mechanism was investigated and is discussed.
View Article and Find Full Text PDFRigid and planar conjugated molecules have substantial significance due to their potential applications in organic electronics. Herein we report two highly fused ladder type conjugated molecules, TTCTTC and TTTCTTTC, with up to 10 fused rings in which the fused-thiophene rings are fused to the chromeno[6,5,4-]chromene unit. Both molecules show high HOMO levels and accordingly they can be oxidized into their radical cations with absorptions extending to 1300 nm in the presence of trifluoroacetic acid.
View Article and Find Full Text PDFThe application of a chiral auxiliary ligand to control the diastereoselectivity in the synthesis of a cyclometalated iridium(III) complex is presented. The diastereomeric iridium(III) complexes 1a and 1b are reported, in which a phenoxyoxazoline auxiliary ligand incorporates a chiral center functionalized with a pendant pentafluorophenyl group. The diastereomers were readily separated, and their structural, electrochemical and photophysical properties are discussed.
View Article and Find Full Text PDFA three-color warm-white organic light-emitting diode employing an efficient phosphor-phosphor type host-guest emitting system achieves efficiencies of 27.3% for external quantum efficiency and 74.5 lm W(-1) for power efficiency at a luminance of 1000 cd m(-2) , which maintained the high levels of 24.
View Article and Find Full Text PDF