Publications by authors named "MingXia Yu"

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

The demand for accurate, user-friendly, and sensitive at-home nucleic acid testing solutions is rising due to occasional outbreaks of various infectious diseases and a growing desire for an improved quality of life. In response, we developed the WeD-mini, a compact, palm-sized isothermal fluorescent diagnostic IoT device that weighs just 61 g. The WeD-mini features a uniquely designed, highly sensitive optical sensing system, ultra-low power consumption, a minimalist industrial design, and an intelligent operating algorithm.

View Article and Find Full Text PDF

Brain age prediction as well as the prediction difference has been well examined to be a potential biomarker for brain disease or abnormal aging process. However, less knowledge was reported for the cognitive association within normal population. In this study, we proposed a novel approach to brain age prediction by structure-decoupled functional connectome.

View Article and Find Full Text PDF

Quantum Dots (QDs) modified with branched Polyethylene Glycol-amine (6- or 8-arm PEG-amine) coupled with methoxy PEG (mPEG) hold great promise for biomedical applications due to a long half-life in blood and negligible toxicity. However, the potential risks regarding their concomitant prolonged co-incubation with cardiovascular and blood cells remains inconclusive. In the present study, the feasible, effective and convenient proliferating-restricted cell line models representing the circulatory system were established to investigate the cellular internalization followed by intracellular outcomes and resulting acute/sub-acute cytotoxicity of the 6-arm PEG-amine/mPEG QDs.

View Article and Find Full Text PDF

Oysters are recognized as important vectors for human norovirus transmission in the environment. Whether norovirus binds to bacteria in oyster digestive tissues (ODTs) remains unknown. To shed light on this concern, ODT-54 and ODT-32, positive for histo-blood group antigen (HBGA) -like substances, were isolated from ODTs and identified as Pseudomonas composti and Enterobacter cloacae, respectively.

View Article and Find Full Text PDF

Background: The coronavirus disease 2019 (COVID-19) has affected approximately 2 million individuals worldwide; however, data regarding fatal cases have been limited.

Objective: To report the clinical features of 162 fatal cases of COVID-19 from 5 hospitals in Wuhan between December 30, 2019 and March 12, 2020.

Methods: The demographic data, signs and symptoms, clinical course, comorbidities, laboratory findings, computed tomographic (CT) scans, treatments, and complications of the patients with fatal cases were retrieved from electronic medical records.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF), acutely or slowly progressing into irreversible pulmonary disease, causes severe damage to patients' lung functions, as well as death. In China, Chinese medicine injections (CMIs) have been generally combined with Western medicine (WM) to treat IPF, which are safe and effective. This study aimed to systematically compare the efficacy of 14 CMIs combined with WM in the treatment of IPF based on a systematic review and network meta-analysis (NMA).

View Article and Find Full Text PDF

Transmembrane TNF-α (tmTNF), a transmembrane form of TNF-α, was reported overexpressed in approximately 84% of triple-negative breast cancer (TNBC) patients and has emerged as a valid candidate biomarker for targeting TNBC. Paclitaxel is a first-line chemotherapeutic agent for the treatment of triple-negative breast cancer, but suffers from low water solubility, resulting in its low bioavailability. To achieve site-specific delivery of the anticancer chemotherapeutic drug (paclitaxel) on TNBC, we developed tmTNF-α monoclonal antibody (mAb)-conjugated paclitaxel (PTX) nanoparticles (NPs) (tmTNF-α mAb-PTX NPs) as potential nanocarriers.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) in cancer patients' peripheral blood have been demonstrated to be a significant biomarker for metastasis detection, disease prognosis, and therapy response. Due to their extremely low concentrations, efficient enrichment and non-destructive release are needed. Herein, an FTO chip modified with multifunctional gelatin nanoparticles (GNPs) was designed for the specific capture and non-destructive release of CTCs.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) is one of the most common and lethal malignant tumors worldwide and the prognosis of OC remains unsatisfactory. Transcription factors (TFs) are demonstrated to be associated with the clinical outcome of many types of cancers, yet their roles in the prognostic prediction and gene regulatory network in patients with OC need to be further investigated.

Methods: TFs from GEO datasets were collected and analyzed.

View Article and Find Full Text PDF

Water pollution caused by the release of manganese (Mn) and ammonia nitrogen (NH-N) from electrolytic manganese residue (EMR) generated from industrial activities poses a serious threat to ecosystems and human health. In this study, an integrated process consisting sequentially of hydroxide sedimentation, struvite precipitation, breakpoint chlorination, and ferric chloride coagulation was optimized to remove Mn and NH-N from EMR leachate, and to address the issue of residual orthophosphate caused by struvite precipitation. The precipitates were characterized using X-ray diffraction, scanning electron microscopy, and thermogravimetric analyses.

View Article and Find Full Text PDF

The fabrication of solid-state single-molecule switches with high on-off conductance ratios has been proposed to advance conventional technology in areas such as molecular electronics. Herein, we employed the scanning tunneling microscope break junction (STM-BJ) technique to modulate conductance in single-molecule junctions using mechanically induced stretching. Compound possesses two dihydrobenzothiophene (DHBT) anchoring groups at the opposite ends linked with rigid alkyne side arms to form a gold-molecule-gold junction, while contains 4-pyridine-anchoring groups.

View Article and Find Full Text PDF

Objective: To study the effect of early systematic rehabilitation nursing on the quality of life and limb function in elderly patients with stroke sequelae.

Methods: This prospective study was conducted in 97 elderly patients with stroke sequelae. These patients were randomly allocated to the control group (n=49) and the experimental group (n=48).

View Article and Find Full Text PDF

Sensitive detection of SARS-CoV-2 is of great importance for inhibiting the current pandemic of COVID-19. Here, we report a simple yet efficient platform integrating a portable and low-cost custom-made detector and a novel microwell array biochip for rapid and accurate detection of SARS-CoV-2. The instrument exhibits expedited amplification speed that enables colorimetric read-out within 25 minutes.

View Article and Find Full Text PDF

In this study, two cadmium-tolerant endophytic bacteria (Microbacterium sp. D2-2 and Bacillus sp. C9-3) were employed as biosorbents to remove Cd(II) from aqueous solutions.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 virus is constantly mutating, and researchers used various methods to study these mutations and their clinical relevance.
  • They found 35 significant variants, including one deletion (Δ500-532) in the Nsp1 region, which occurs in over 20% of samples and is linked to more severe disease symptoms.
  • This specific mutation has been identified in 37 countries and results in lower immune responses, suggesting its potential role in diagnosing and developing treatments for COVID-19.
View Article and Find Full Text PDF

Background: S100A8 plays a key role in many cellular processes and is highly expressed in various solid cancers. However, the prognostic role of S100A8 has not been well defined. Therefore, we conducted a quantitative meta-analysis to investigate whether or not S100A8 could be used as a prognostic biomarker in solid tumors.

View Article and Find Full Text PDF

Constructing biological affinity devices is considered as an effective strategy for isolating circulating tumor cells (CTCs), and electrospun nanofibers (ESNFs) have recently received attention. However, the current research focuses on polymer fibers, and fabricating stimuli-responsive inorganic nanofibers for cancer diagnosis and analysis is still challenging. In this work, Zn-Mn oxide nanofibers (ZnMnNFs) are used to capture and purify cancer cells after modification with specific antibodies.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) were synthesized a hydrothermal method, in which extracellular polymeric substance (EPS) from anaerobic ammonium oxidation (anammox) granular sludge was used as a carbon precursor, while citric acid and ethylenediamine were applied as auxiliary carbon source and passivation agent, respectively. The synthesized CQDs, with orderly spherical shape and mean size of 7.15 nm, emitted blue fluorescent light under UV radiation of 365 nm.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To counter COVID-19 spreading, an infrastructure to provide rapid and thorough molecular diagnostics and serology testing is the cornerstone of outbreak and pandemic management. We hereby review the clinical insights with regard to using molecular tests and immunoassays in the context of COVID-19 management life cycle: the preventive phase, the preparedness phase, the response phase and the recovery phase.

View Article and Find Full Text PDF

Herein, we established a universal and sensitive plasmonic sensing strategy for biomolecule assays by coupling the hybridization chain reaction (HCR) strategy and a triple-helix molecular switch. Upon the recognition of the target, a single-stranded DNA as a universal trigger (UT) was released from the triple-helix molecular switch (THMS). Thus, the HCR process can be triggered between two hairpins M1 and M2, resulting in the aggregation of gold nanoparticles (AuNPs) via the hybridization between the tail sequence on M1 (or M2) and a DNA-AuNP probe with a dramatic change in the absorbance at 521 nm.

View Article and Find Full Text PDF

Objective: To evaluate the accuracy, sensitivity, and specificity of DNA quantitative cytology test for the diagnosis of endometrial cancer or precancerous lesions and then discuss the value of DNA quantitative cytology as a screening tool for endometrial cancer.

Methods: The study enrolled 575 patients from September 2013 to January 2017 in Shanghai Minhang Central Hospital. Endometrial hysteroscopy plus dilation and curettage and DNA quantitative cytology tests were conducted as a method for the diagnosis of endometrial cancer.

View Article and Find Full Text PDF

The recovery of rare single circulating tumor cells (CTCs) from patients has great potential to facilitate the study of cell heterogeneity and cancer metastasis, which may promote the development of individualized cancer immunotherapy. Herein, a versatile single-cell recovery approach that utilizes an acoustic droplet-induced enzyme responsive platform for the capture and on-demand release of single CTCs is proposed. The platform combines a multifunctional enzyme-responsive gelatin nanoparticle (GNP)-decorated substrate (GNP-chip) for specific capture with an acoustic droplet positioning technique to realize on-demand release of single CTCs.

View Article and Find Full Text PDF

This study aims to investigate the ability of parathyroid hormone (PTH)-related peptide-1/type I collagen (PTHrP-1/Col-I) scaffold material to induce ectopic osteogenesis in the quadriceps muscle pocket of Sprague-Dawley (SD) rats. A novel peptide PTHrP-1 was derived from PTH and used at different concentrations (0, 0.1, 0.

View Article and Find Full Text PDF