Publications by authors named "Ming-hung Wong"

Lead (Pb), a highly toxic heavy metal, poses a significant global health risk, particularly to children. Widely used in paint manufacturing for its remarkable corrosion-resistance properties Pb exposure has been linked to severe health issues, including reduced neurotransmitter levels, organ damage, potentially leading to death in extreme cases. Children Are particularly vulnerable, with Pb toxicity primarily affecting the brain, reproductive, kidneys, and cardiovascular systems.

View Article and Find Full Text PDF

Conventional approaches like Agrobacterium-mediated transformation, viral transduction, biolistic particle bombardment, and polyethylene glycol (PEG)-facilitated delivery methods have been optimized for transporting specific genes to various plant cells. These conventional approaches in genetically modified crops are dependent on several factors like plant types, cell types, and genotype requirements, as well as numerous disadvantages such as time-consuming, untargeted distribution of genes, and high cost of cultivation. Therefore, it is suggested to develop novel techniques for the transportation of genes in crop plants using tailored nanoparticles (NPs) of manipulative and controlled high-performance features synthesized using green and chemical routes.

View Article and Find Full Text PDF

Coal combustion at power plants is a significant source of environmental pollution, with the deposition of heavy metals in soils leading to extensive ecosystem contamination and exacerbating the harmful impacts of human activities. This study presents a field investigation of heavy metal concentrations in soils around a coal-fired power plant, with monitoring sites located 1.7 to 15.

View Article and Find Full Text PDF

Pyrolysis of sewage sludge can significantly reduce industrial waste while producing high-value biochar for soil improvement. This study aimed to evaluate the quality and safety of biochar from sewage sludge under different pyrolysis conditions. Optimal carbonization conditions (700 °C, 60 min, 5 °C/min) were identified by analyzing the physicochemical properties, elemental composition, structural characteristics, and the specific surface area of biochar.

View Article and Find Full Text PDF

Recycling food waste by feeding it to insects can result in the continuous production of high-quality animal feed protein and organic fertilizer. However, the bioconversion efficiency and safety of using insects as feed protein for animal breeding are important factors limiting the development of this technology. Therefore, we aimed to optimize the efficiency of bioconversion of food waste using Lucilia sericata maggot (LSM).

View Article and Find Full Text PDF

The rise in antibiotic-resistant genes (ARGs) has recently become a pressing issue, with livestock manure identified as a significant source of these genes. Yet, the distribution of fertilizers derived from livestock manure sold online, potentially containing high levels of ARGs and antibiotic-resistant bacteria (ARB), is often not considered. Our study involved a random survey of commercial organic fertilizers available on online marketplaces, focusing on 13 common ARGs and 2 integrons (intI1, intI2).

View Article and Find Full Text PDF

Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 μg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells.

View Article and Find Full Text PDF

There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %).

View Article and Find Full Text PDF

Toy production has been increasing over the last few decades to meet the growing demands for toys across the globe, which has inevitably worsened the problem of toy waste. Given the lack of modern waste disposal facilities, rural villagers in many developing countries often discard and incinerate toy waste in backyards or riverbanks, which may release the pollutants from toys (e.g.

View Article and Find Full Text PDF

The study explored the impact of water management on rice cultivation in mercury-contaminated paddy soil. The objective was to analyze the characteristics of mercury translocation by converting flooded soils to dry farming (non-flooded) to alleviate mercury accumulation in rice grains. The experiment was conducted over three consecutive rice-growing seasons, employing two distinct water management models: a continuously flooded rice cultivation mode and a flooded rice planting mode in the first season, followed by a non-flooded rice farming mode in the second and third seasons.

View Article and Find Full Text PDF

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area.

View Article and Find Full Text PDF

Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities.

View Article and Find Full Text PDF

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs.

View Article and Find Full Text PDF

Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs.

View Article and Find Full Text PDF

With increasing global awareness of soil health, attention must be paid to fluorine exposure in soils, which poses a threat to human health. Therefore, this study aimed to study the fluorine adsorption characteristics of swine manure and straw biochars and their impact on fluorine adsorption-desorption in soil with batch experiments. The biochar samples originated from high-temperature anaerobic cracking of swine manure (350°C, 500°C, and 650°C) and straw (500°C).

View Article and Find Full Text PDF

Environmental pollution and poor feed quality pose potential threats to aquatic organisms and human health, representing challenges for the aquaculture industry. In light of the rising demand for aquatic organisms, there is an urgent need to improve aquacultural production and protect the products from contamination. Char, a carbonaceous material derived through pyrolysis of organic carbon-rich biomass, has proven advantages in soil, air, and water remediation.

View Article and Find Full Text PDF

Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.

View Article and Find Full Text PDF

Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks.

View Article and Find Full Text PDF

Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment.

View Article and Find Full Text PDF

Using swine manure biochar and biogas slurry in agriculture proves to be an effective strategy for soil improvement and fertilization. In this study, a pot trial on the growth of lotus root was conducted to investigate the persistent effects of applying 350°C swine manure biochar (1% and 2%) and biogas slurry (50% and 100%) on soil nitrogen nutrient and lotus root quality. The results showed that compared to chemical fertilizer alone (A0B0), swine manure biochar significantly increased soil nitrogen content after one year of application.

View Article and Find Full Text PDF
Article Synopsis
  • * Median mercury levels were found at 12.8 µg/kg for total mercury (THg) and 6.94 µg/kg for methylmercury (MeHg), with the highest contributions from cereals (32.2%), vegetables (30.5%), and livestock (16.2%).
  • * The research concluded that cereals contributed the most to daily THg intake, while marine fish were the main source for MeHg, and indicated no health risks associated with mercury consumption from these foods for Chengdu residents (Hazard Rat
View Article and Find Full Text PDF

Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area.

View Article and Find Full Text PDF

In this study, we investigated the effects of different types of selenium (Se) (sodium selenite [SS], yeast selenium [YS], and nano-selenium [NS]) on the toxicity, growth, Se accumulation, and transformation of Lucilia sericata maggots (LSMs). We found that the 50% lethal concentration of LSMs exposed to SS was 2.18 and 1.

View Article and Find Full Text PDF

Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus.

View Article and Find Full Text PDF

The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal.

View Article and Find Full Text PDF