Hydrogen production from water-splitting is one of the most promising hydrogen production methods, and the preparation of the hydrogen evolution reaction (HER) catalyst is very important. Although Pt-based materials have the best catalytic activity for HER, their high price and scarcity greatly limit their large-scale industrial application prospects. Herein, a new method to prepare HER catalyst is described, where dyes used in dye-sensitized solar cells (DSSCs) were used as precursors.
View Article and Find Full Text PDFThe development of new sensitizers and new sensitization methods is one of the important means to enhance the conversion efficiency of dye-sensitized solar cells (DSSCs); the ultimate goal is to broaden the spectral response of dyes, reduce electron recombination, and suppress dye aggregation. In this study, we have developed a series of new self-assembled dyes and applied them in DSSCs. We prepared two organic antenna chromophores S1 and S2 and coordinated them with two acceptors A1 and A2 via zinc to construct A-Zn-S series self-assembled dyes.
View Article and Find Full Text PDFTwo porphyrin chromophores, P1 and P2, were prepared and used as antenna units to coordinate with a metal-free organic dye, JH1, containing pyridine groups. This supramolecular self-assembly strategy can not only effectively improve the light-harvesting ability of the devices but also effectively reduces electron recombination by preventing I of the electrolyte from penetrating into the TiO surface. The DSSC based on JH1 showed a PCE of 2.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2004
After nano-particles (ZnO) had been encapsulated by a kind of water-soluble cellulose Hydoxyl-Propyl-Methyl Cellulose (HPMC), then methyl methacrylate was grafted onto the surface of them. Thus the surface of nano-ZnO had been successfully modified. FTIR, DTA and TEM were utilized to confirm the results.
View Article and Find Full Text PDF