The generation and regulation of chirality are closely related to the origin of life. Using achiral precursors to spontaneously build chiral MOFs remains a major challenge. Here, a method to synthesize chiral MOFs from achiral precursors by utilizing chiral fragments was achieved.
View Article and Find Full Text PDFIn this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N.
View Article and Find Full Text PDFThe title Cd(II) compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5-(pyridin-4-yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent Cd(II) cations, two deprotonated L(2-) ligands, four coordinated water molecules and five isolated water molecules. One of the Cd(II) cations adopts a six-coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L(2-) ligands, one N atom of another L(2-) ligand and two coordinated water molecules.
View Article and Find Full Text PDF