Publications by authors named "Ming-Yi Guo"

This paper describes a voltammetric method for sensitive determination of specific sequences of DNA. The assay is based on three-dimensional nitrogen-doped graphene (3D-NG) which, due to its excellent electrical conductivity, provides a favorable microenvironment to retain the activity of immobilized probe single-stranded DNA and also facilitates electron transfer. The free-standing 3D-NG electrode was characterized by scanning electron microscopy, Raman and X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

View Article and Find Full Text PDF

This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis.

View Article and Find Full Text PDF

The complex microbiota of pit mud of solid-state fermentation reactors used for the production of Chinese liquor is responsible for producing one of the oldest distillates in the world. We apply a deep-sequencing approach to characterize the microbiota from pits that have been in use for up to 440 years.

View Article and Find Full Text PDF

Mesoporous TiO(2) spheres with a large surface area and rich surface hydroxyl groups have been prepared through a light-driven synthetic strategy, and the as-prepared mesoporous material is able to convert urea to carbon nitride efficiently under a mild condition.

View Article and Find Full Text PDF

Transition-metal-doped titanium glycolates (M-TG, with M=Fe, Mn), which are the first non-stoichiometric heterometal alkoxides, have been synthesised through a solvothermal doping approach. X-ray diffraction, UV/Vis diffuse reflectance and ESR spectroscopy revealed that the dopant ion (Fe(3+) or Mn(2+)) is substituted for Ti(4+) in the TG lattice. Fe(3+) prolongs the crystallisation time of Fe-TG, whereas Mn(2+) has a smaller effect on the crystallisation time in comparison with Fe(3+).

View Article and Find Full Text PDF