Publications by authors named "Ming-Yao Chang"

Unlabelled: Recent clinical trials using autologous bone marrow or peripheral blood cells to treat myocardial infarction (MI) show controversial results, although the treatment has a good safety profile. These discrepancies are likely caused by factors such as aging, systemic inflammation, and cell processing procedures, all of which might impair the regenerative capability of the cells used. Here, we tested whether injection of human cord blood mononuclear cells (CB-MNCs) combined with hyaluronan (HA) hydrogel improves cell therapy efficacy in a pig MI model.

View Article and Find Full Text PDF

Background: We previously showed that injection of peptide nanofibers (NF) combined with autologous bone marrow mononuclear cells (MNC) immediately after coronary artery ligation improves cardiac performance in pigs. To evaluate the clinical feasibility, this study was performed to determine the therapeutic time window for NF/MNC therapy in acute myocardial infarction (MI).

Methods And Results: A total of 45 adult minipigs were randomly grouped into 7 groups: sham or MI plus treatment with NS (normal saline), or NF or MNC alone at 1 day (1D) post-MI, or NF/MNC at 1, 4, or 7 days post-MI (N≥6).

View Article and Find Full Text PDF

Accumulating evidence suggests that the benefits of cell therapy for cardiac repair are modest and transient due to progressive harmful cardiac remodeling as well as loss of transplanted cells. We previously demonstrated that injection of peptide nanofibers (NFs) reduces ventricular remodeling and facilitates cell retention at 1 month after acute myocardial infarction (MI) in pigs. However, it remains unclear whether these benefits still persist as the material is being degraded.

View Article and Find Full Text PDF

Human placenta-derived adherent cells (PDACs) are a culture-expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory, anti-inflammatory, angiogenic, and neuroprotective properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. We tested the therapeutic effects of PDA-001 in mice with chronic heart failure (CHF).

View Article and Find Full Text PDF

Intramyocardial injection of bone marrow mononuclear cells (MNCs) with hyaluronan (HA) hydrogel is beneficial to the ischemic heart in a rat model of myocardial infarction (MI). However, the therapeutic efficacy and safety must be addressed in large animals before moving onto a clinical trial. Therefore, the effect of combined treatment on MI was investigated in pigs.

View Article and Find Full Text PDF

All research investment has the goal of improving quality of life and health status. In recent years, the emerging technologies in nanomedicine research provide us a new frontier in the fight against human disease. By taking advantage of the unique physicochemical properties of nanoparticles (NPs), nanomedicine where drugs are blended into nanomaterials readily offers a wide range of applications in the tracing, diagnosis and treatment of disease.

View Article and Find Full Text PDF

Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities.

View Article and Find Full Text PDF

Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS).

View Article and Find Full Text PDF

Recent developments in nanotechnology have created considerable potential toward diagnosis and cancer therapy. In contrast, the use of nanotechnology in tissue repair or regeneration remains largely unexplored. We hypothesized that intramyocardial injection of insulin-like growth factor (IGF)-1-complexed poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs) increases IGF-1 retention, induces Akt phosphorylation, and provides early cardioprotection after acute myocardial infarction (MI).

View Article and Find Full Text PDF

The unsurpassed properties in electrical conductivity, thermal conductivity, strength, and surface area-to-volume ratio allow for many potential applications of carbon nanomaterials in various fields. Recently, studies have characterized the potential of using carbon nanotubes (CNTs) as a biomaterial for biomedical applications and as a drug carrier via intravenous injection. However, most studies show that unmodified CNTs possess a high degree of toxicity and cause inflammation, mechanical obstruction from high organ retention, and other biocompatibility issues following in vivo delivery.

View Article and Find Full Text PDF