Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes.
View Article and Find Full Text PDFPGC1α is a pleiotropic co-factor that affects angiogenesis, mitochondrial biogenesis, and oxidative muscle remodeling via its association with multiple transcription factors, including the master oxidative nuclear receptor ERRγ. To decipher their epistatic relationship, we explored ERRγ gain of function in muscle-specific PGC1α/β double-knockout (PKO) mice. ERRγ-driven transcriptional reprogramming largely rescues muscle damage and improves muscle function in PKO mice, inducing mitochondrial biogenesis, antioxidant defense, angiogenesis, and a glycolytic-to-oxidative fiber-type transformation independent of PGC1α/β.
View Article and Find Full Text PDFInvestigating the expression of RNAs that differ by short or single nucleotide sequences at a single-cell level in tissue has been limited by the sensitivity and specificity of in situ hybridization (ISH) techniques. Detection of short isoform-specific sequences requires RNA isolation for PCR analysis-an approach that loses the regional and cell-type-specific distribution of isoforms. Having the capability to distinguish the differential expression of RNA variants in tissue is critical because alterations in mRNA splicing and editing, as well as coding single nucleotide polymorphisms, have been associated with numerous cancers, neurological and psychiatric disorders.
View Article and Find Full Text PDFManagement of energy stores is critical during endurance exercise; a shift in substrate utilization from glucose toward fat is a hallmark of trained muscle. Here we show that this key metabolic adaptation is both dependent on muscle PPARδ and stimulated by PPARδ ligand. Furthermore, we find that muscle PPARδ expression positively correlates with endurance performance in BXD mouse reference populations.
View Article and Find Full Text PDFBackground: Accurate identification of HPV-driven oropharyngeal cancer (OPC) is a major issue and none of the current diagnostic approaches is ideal. An in situ hybridization (ISH) assay that detects high-risk HPV E6/E7 mRNA, called the RNAscope HPV-test, has been recently developed. Studies have suggested that this assay may become a standard to define HPV-status.
View Article and Find Full Text PDFContext: TTF-1 and napsin A immunomarkers have a crucial role in differentiating lung adenocarcinoma from lung squamous cell carcinoma and in identifying a primary lung adenocarcinoma when working on a tumor of unknown origin.
Objectives: To investigate the diagnostic sensitivity of ribonucleic acid in situ hybridization (RNAscope) in the detection of expression of these biomarkers in lung adenocarcinomas and to compare RNAscope to immunohistochemical techniques.
Design: Both RNAscope and the immunohistochemical assays for TTF-1 and napsin A were performed on tissue microarray sections containing 80 lung adenocarcinomas and 80 lung squamous cell carcinomas.
The highly conserved cellular degradation pathway, macroautophagy, regulates the homeostasis of organelles and promotes the survival of T lymphocytes. Previous results indicate that Atg3-, Atg5-, or Pik3c3/Vps34-deficient T cells cannot proliferate efficiently. Here we demonstrate that the proliferation of Atg7-deficient T cells is defective.
View Article and Find Full Text PDFApoptosis can be induced by either death receptors on the plasma membrane (extrinsic pathway) or the damage of the genome and/or cellular organelles (intrinsic pathway). Previous studies suggest that cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) promotes cell survival in death receptor-induced apoptosis pathway in T lymphocytes. Independent of death receptor signaling, mitochondria sense apoptotic stimuli and mediate the activation of effector caspases.
View Article and Find Full Text PDFThe T lymphocyte response initiates with the recognition of MHC/peptides on antigen presenting cells by the T cell receptor (TCR). After the TCR engagement, the proximal signaling pathways are activated for downstream cellular events. Among these pathways, the calcium-signaling flux is activated through the depletion of endoplasmic reticulum (ER) calcium stores and plays pivotal roles in T cell proliferation, cell survival, and apoptosis.
View Article and Find Full Text PDFNecroptosis, a caspase-independent, receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIPK1)/RIPK3-dependent necrotic cell death, occurs in cells when apoptosis is blocked. A high level of macroautophagy (herein referred to as autophagy) is usually detected in necroptotic cells, although it is still controversial as to whether excessive autophagy leads to cell death or is cytoprotective. In a recently published paper, we show that the anti-apoptotic protein CFLAR (CASP8 and FADD-like apoptosis regulator) long isoform (CFLARL) plays a critical role in all three fundamental intracellular processes: autophagy, necroptosis, and apoptosis in T lymphocytes.
View Article and Find Full Text PDFMacroautophagy (referred to as autophagy) is a fundamental intracellular process characterized by the sequestration of cytoplasmic compartments through double-membrane vesicles, termed autophagosomes. Recent studies have established important roles of autophagy in regulating T lymphocyte development and function. Resting T lymphocytes have basal levels of autophagy that is upregulated by T cell receptor stimulation.
View Article and Find Full Text PDFPrimers were designed based on ompTS gene reported recently. With the specific primers, one target fragment about 1024 bp lacking the signal sequence of ompTS gene was amplified from A. hydrophila genomic DNA via PCR.
View Article and Find Full Text PDF