Publications by authors named "Ming-Shiu Hung"

The drug discovery of G protein-coupled receptors (GPCRs) superfamily using computational models is often limited by the availability of protein three-dimensional (3D) structures and chemicals with experimentally measured bioactivities. Orphan GPCRs without known ligands further complicate the process. To enable drug discovery for human orphan GPCRs, multitask models were proposed for predicting half maximal effective concentrations (EC) of the pairs of chemicals and GPCRs.

View Article and Find Full Text PDF
Article Synopsis
  • * Four natural fucoidans were tested, and the one from the seaweed Undaria pinnatifida displayed the strongest anti-HCoV-OC43 activity, with an effective concentration (EC) value of 0.15 µg/mL, which is not dependent on its sulfate content.
  • * Fucoidans hinder viral entry by interacting with the spike protein of the virus and also inhibit furin activity, leading to reduced viral loads and infections in both cell cultures and infected hamsters. *
View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or β-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase-1 (IDO1) is a potential target for the next generation of cancer immunotherapies. We describe the development of two series of IDO1 inhibitors incorporating a N-hydroxy-thiophene-carboximidamide core generated by knowledge-based drug design. Structural modifications to improve the cellular activity and pharmacokinetic (PK) properties of the compounds synthesized, including extension of the side chain of the N-hydroxythiophene-2-carboximidamide core, resulted in compound 27a, a potent IDO1 inhibitor which demonstrated significant (51%) in vivo target inhibition on IDO1 in a human SK-OV-3 ovarian xenograft tumor mouse model.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase (IDO1) inhibitors are speculated to be useful in cancer immunotherapy, but a phase III clinical trial of the most advanced IDO1 inhibitor, epacadostat, did not meet its primary end point and was abandoned. In previous work, we identified the novel IDO1 inhibitor -(4-chlorophenyl)-2-((5-phenylthiazolo[2,3-][1,2,4]triazol-3-yl)thio)acetamide through high-throughput screening (HTS). Herein, we report a structure-activity relationship (SAR) study of this compound, which resulted in the potent IDO1 inhibitor 1-(4-cyanophenyl)-3-(3-(cyclopropylethynyl)imidazo[2,1-]thiazol-5-yl)thiourea (hIDO IC = 16.

View Article and Find Full Text PDF

Leptin is an adipokine predominantly secreted by adipocytes and has many physiological roles, including in energy homeostasis. We identified that AM630, a cannabinoid receptor 2 (CB2) antagonist, down-regulated leptin expression in mature adipocytes differentiated from either stromal vascular fractions isolated from inguinal fat pads of C57BL/6J mice or 3T3-L1 preadipocytes. However, the leptin-suppressive effects of AM630 preserved in CB2-deficient adipocytes indicated the off-target activity of AM630 in leptin expression.

View Article and Find Full Text PDF

Adequate pain management remains an unmet medical need. We previously revealed an opioid-independent analgesic mechanism mediated by orexin 1 receptor (OX1R)-initiated 2-arachidonoylglycerol (2-AG) signaling in the ventrolateral periaqueductal gray (vlPAG). Here, we found that low-frequency median nerve stimulation (MNS) through acupuncture needles at the PC6 (Neiguan) acupoint (MNS-PC6) induced an antinociceptive effect that engaged this mechanism.

View Article and Find Full Text PDF

Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (T) cell differentiation and T cell metabolism. In vitro, DUSP6 CD4 T cells produced elevated IL-21.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase is a heme-containing enzyme implicated in the down regulation of the anti-tumor immune response, and considered a promising anti-cancer drug target. Several pharmaceutical companies, including Pfizer, Merck, and Bristol-Myers Squibb, are known to be in pursuit of IDO inhibitors, and Incyte recently reported good results in the phase II clinical trial of the IDO inhibitor Epacadostat. In previous work, we developed a series of IDO inhibitors based on a sulfonylhydrazide core structure, and explored how they could serve as potent IDO inhibitors with good drug profiles.

View Article and Find Full Text PDF

Objective: Caveolin-1 (Cav-1) is expressed abundantly in adipose tissue and involved in many physiological processes. While Cav-1 has been reported to be secreted in pancreatic acinar cells and LNCaP prostate cancer cells, its secretion from adipose tissue awaits investigation.

Methods: Cav-1 secretion from 3T3-L1 adipocytes and fat tissues from normal chow diet- and high-fat diet (HFD)-fed mice was measured.

View Article and Find Full Text PDF

Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA.

View Article and Find Full Text PDF

Tryptophan metabolism has been recognized as an important mechanism in immune tolerance. Indoleamine 2,3-dioxygenase plays a key role in local tryptophan metabolism via the kynurenine pathway and has emerged as a therapeutic target for cancer immunotherapy. Our prior study identified phenyl benzenesulfonyl hydrazide 2 as a potent in vitro (though not in vivo) inhibitor of indoleamine 2,3-dioxygenase.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1), promoting immune escape of tumors, is a therapeutic target for the cancer immunotherapy. A number of IDO1 inhibitors have been identified, but only limited structural biology studies of IDO1 inhibitors are available to provide insights on the binding mechanism of IDO1. In this study, we present the structure of IDO1 in complex with 24, a NLG919 analogue with potent activity.

View Article and Find Full Text PDF

A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.

View Article and Find Full Text PDF

A novel class of phenyl benzenesulfonylhydrazides has been identified as potent inhibitors of indoleamine 2,3-dioxygenase (IDO), and their structure-activity relationship was explored. Coupling reactions between various benzenesulfonyl chlorides and phenylhydrazides were utilized to synthesize the sulfonylhydrazides bearing various substituents. Compound 3i exhibited 61 nM of IC50 in enzymatic assay and 172 nM of EC50 in the HeLa cell.

View Article and Find Full Text PDF

After extensive synthetic efforts, we found that many structurally diverse bioisosteres could be generated via derivatizing the C-4 alkyl chain on the pyrazole ring of compound 3 (B/P = 1/33) with different electronegative groups. Especially when a sulfonamide or sulfamide moiety was added, resulting compounds exhibited not only potent CB1R activity but also a desired tPSA value over 90 Å(2), a threshold considered to possess a low probability to cross BBB, leading to the identification of compound 4 (B/P = 1/64) as a peripherally restricted CB1R antagonist. Apart from its significant weight-loss efficacy in DIO mice, compound 4 also displays 163 clean off-target profiles and is currently under development for treating obesity and the related metabolic syndrome.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are promising potential candidates for the treatment of immunological diseases because of their immunosuppressive functions. However, the molecular mechanisms that mediate MSCs' immunosuppressive activity remain elusive. In this article, we report for the first time, to our knowledge, that secreted growth-regulated oncogene (GRO) chemokines, specifically GRO-γ, in human MSC-conditioned media have an effect on the differentiation and the function of human monocyte-derived dendritic cells.

View Article and Find Full Text PDF

Since Rimonabant was withdrawn in Europe in 2008 because of its substantial CNS risk factors including depression and anxiety, the development of anti-obesity drugs targeting CB1R in the brain has been suspended and/or terminated globally. Instead, developing peripherally restricted CB1R antagonists is actively pursued in the hope that not only could they eliminate any CNS adverse effects observed with Rimonabant, but also maintain therapeutic benefits in metabolic syndrome, including obesity, type 2 diabetes, and non-alcoholic fatty liver diseases. In this review, we summarized the most recent advances that have been made on this area, with particular emphasis on various synthetic approaches, whereby the increase in polarity, water solubility and polar surface area were centralized on, toward potential peripheral-acting CB1 antagonists.

View Article and Find Full Text PDF

A novel series of N-linked β-D-xylosides were synthesized and evaluated for inhibitory activity against sodium-dependent glucose cotransporter 2 (SGLT2) in a cell-based assay. Of these, the 4-chloro-3-(4-cyclopropylbenzyl)-1-(β-D-xylopyranosyl)-1H-indole 19m was found to be the most potent inhibitor, with an EC(50) value similar to that of the natural SGLT2 inhibitor phlorizin. Further studies in Sprague-Dawley (SD) rats indicated that 19m significantly increased urine glucose excretion in a dose-dependent manner with oral administration.

View Article and Find Full Text PDF

A novel alkynylthiophene series of cannabinoid CB1 receptor antagonists has been described to exhibit distinct intrinsic activities with minimal substructure modifications. The three representatives, BPR0432, BPR0568 and BPR0569, functioning as a neutral antagonist, an inverse agonist and a partial agonist, respectively, in GTP binding assay, were further characterized for their downstream signaling activities in relation to in vivo efficacy in appetite suppression to diets of different macronutrients. Interestingly, these three derivatives all behaved as inverse agonists with the potency of BPR0432>BPR0568>BPR0569 in cAMP assay.

View Article and Find Full Text PDF

By using the active metabolite 5 as an initial template, further structural modifications led to the identification of the titled compound 24 (BPR-890) as a highly potent CB1 inverse agonist possessing an excellent CB2/1 selectivity and remarkable in vivo efficacy in diet-induced obese mice with a minimum effective dose as low as 0.03 mg/kg (po qd) at the end of the 30-day chronic study. Current SAR studies along with those of many existing rimonabant-mimicking molecules imply that around the pyrazole C3-position, a rigid and deep binding pocket should exist for CB1 receptor.

View Article and Find Full Text PDF

This letter reports the new entry of novel 1,2,3-triazole derivatives as CB1 receptor antagonists. The design, synthesis and biological evaluation of N1 and N2 substituted 1,2,3-trizoles are described. The N2 substituted, symmetrical 1,2,3-triazoles are more potent ligands than the unsymmetrical analogues.

View Article and Find Full Text PDF