Unlabelled: Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female mosquitos feeding on naïve vs viremic mouse.
View Article and Find Full Text PDFWater permeability of the kidney collecting ducts is regulated in part by the amount of the molecular water channel protein aquaporin-2 (AQP2), whose expression, in turn, is regulated by the pituitary peptide hormone vasopressin. We previously showed that stable glucocorticoid receptor knockdown diminished the vasopressin-induced gene expression in the collecting duct cell model mpkCCD. Here, we investigated the pathways regulated by the glucocorticoid receptor by comparing transcriptomes of the mpkCCD cells with or without stable glucocorticoid receptor knockdown.
View Article and Find Full Text PDFThe propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation.
View Article and Find Full Text PDFWater permeability of the kidney collecting ducts is regulated by the peptide hormone vasopressin. Between minutes and hours (short-term), vasopressin induces trafficking of the water channel protein aquaporin-2 to the apical plasma membrane of the collecting duct principal cells to increase water permeability. Between hours and days (long-term), vasopressin induces aquaporin-2 gene expression.
View Article and Find Full Text PDFAquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for water reabsorption by the kidney collecting ducts. Under control conditions, most AQP2 resides in the recycling endosomes of principal cells, where it answers to vasopressin with trafficking to the apical plasma membrane to increase water reabsorption. Upon vasopressin withdrawal, apical AQP2 retreats to the early endosomes before joining the recycling endosomes for the next vasopressin stimulation.
View Article and Find Full Text PDFReplication of the genotype 2 hepatitis C virus (HCV) requires hyperphosphorylation of the nonstructural protein NS5A. It has been known that NS5A hyperphosphorylation results from the phosphorylation of a cluster of highly conserved serine residues (S2201, S2208, S2211, and S2214) in a sequential manner. It has also been known that NS5A hyperphosphorylation requires an NS3 protease encoded on one single NS3-5A polyprotein.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2020
Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking.
View Article and Find Full Text PDFAquaporin-2 (AQP2) is a molecular water channel protein responsible for water reabsorption by the kidney collecting ducts. Many water balance disorders are associated with defects in AQP2 gene expression regulated by the peptide hormone vasopressin. Here, we studied roles of Elf3 (E26 transformation-specific (Ets)-related transcription factor 3) in AQP2 gene expression in the collecting duct cells (mpkCCD).
View Article and Find Full Text PDFThe nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation.
View Article and Find Full Text PDFProtein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) protein NS5A is a phosphorylated protein with crucial roles in viral replication and assembly. NS5A was thought to undergo sequential phosphorylation on a series of conserved serine residues; however, the phosphorylation cascade remained obscure. Using three phosphorylation-specific antibodies, we found that phosphorylation at S232, S235, and S238 occurred in parallel in HCV-infected Huh7.
View Article and Find Full Text PDFChronic hepatitis C virus (HCV) infection is still a global epidemic despite the introduction of several highly effective direct-acting antivirals that are tagged with sky-high prices. The present study aimed to identify an herbal decoction that ameliorates HCV infection. Among six herbal decoctions tested, the decoction had the most profound effect on the HCV reporter activity in infected Huh7.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
February 2018
The mouse cortical collecting duct cell (mpkCCD) has been an instrumental cell model for studying vasopressin-mediated aquaporin-2 regulation. This cell line was first developed by Vandewalle's group from a transgenic mouse carrying the transforming SV40 antigens driven by the pyruvate kinase promoter. To immortalize the cells, four hormone supplements (dexamethasone, epidermal growth factor, insulin, and triiodothyronine) were used to enhance SV40 antigen expression; however, these hormones appear to have various effects on aquaporin-2 gene expression in the cells.
View Article and Find Full Text PDFThe nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) is a phosphoprotein with two phosphorylation states: hypo- and hyperphosphorylation. Genetic mutation studies have demonstrated a cluster of serine residues responsible for NS5A hyperphosphorylation and functions in viral replication and assembly; however, the phosphorylation levels and potential interactions among the serine residues are unclear. We used three specific antibodies to measure NS5A phosphorylation at S222, S235, and S238 that were identified in our previous proteomics study.
View Article and Find Full Text PDFThe abundance of integral membrane proteins in the plasma membrane is determined by a dynamic balance between exocytosis and endocytosis, which can often be regulated by physiological stimuli. Here, we describe a mechanism that accounts for the ability of the peptide hormone vasopressin to regulate water excretion via a phosphorylation-dependent modulation of the PDZ domain-ligand interaction involving the water channel protein aquaporin-2. We discovered that the PDZ domain-containing protein Sipa1l1 (signal-induced proliferation-associated 1 like 1) binds to the cytoplasmic PDZ-ligand motif of aquaporin-2 and accelerates its endocytosis in the absence of vasopressin.
View Article and Find Full Text PDFPhosphorylation at serine 235 (S235) of the hepatitis C virus (HCV) non-structural protein 5A (NS5A) plays a critical role in the viral life cycle. For medical and virological interests, we exploited the HEK293T kidney cells to test 3 candidate protein kinases on NS5A S235 phosphorylation. Inhibitors that inhibit casein kinase I α (CKIα), polo-like kinase I (PlKI) or calmodulin-dependent kinase II (CaMKII) all reduced NS5A S235 phosphorylation.
View Article and Find Full Text PDFThe non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region.
View Article and Find Full Text PDFAn appropriate liver-specific progenitor cell marker is a stepping stone in liver regenerative medicine. Here, we report brain isoform glycogen phosphorylase (GPBB) as a novel liver progenitor cell marker. GPBB was identified in a protein complex precipitated by a monoclonal antibody Ligab generated from a rat liver progenitor cell line Lig-8.
View Article and Find Full Text PDFIn kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin.
View Article and Find Full Text PDFAquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and with dilutional hyponatremia (syndrome of inappropriate antidiuresis, congestive heart failure, cirrhosis). Normal regulation of AQP2 by vasopressin involves 2 independent regulatory mechanisms: (1) short-term regulation of AQP2 trafficking to and from the apical plasma membrane, and (2) long-term regulation of the total abundance of the AQP2 protein in the cells. Most disorders of water balance are the result of dysregulation of processes that regulate the total abundance of AQP2 in collecting duct cells.
View Article and Find Full Text PDFVasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells.
View Article and Find Full Text PDFThe 21st century has seen an explosion of new high-throughput data from transcriptomic and proteomic studies. These data are highly relevant to the design and interpretation of modern physiological studies but are not always readily accessible to potential users in user-friendly, searchable formats. Data from our own studies involving transcriptomic and proteomic profiling of renal tubule epithelia have been made available on a variety of online databases.
View Article and Find Full Text PDFPrevious studies in yeast have supported the view that post-transcriptional regulation of protein abundances may be more important than previously believed. Here we ask the question: "In a physiological regulatory process (the response of mammalian kidney cells to the hormone vasopressin), what fraction of the expressed proteome undergoes a change in abundance and what fraction of the regulated proteins have corresponding changes in mRNA levels?" In humans and other mammals, vasopressin fulfills a vital homeostatic role (viz. regulation of renal water excretion) by regulating the water channel aquaporin-2 in collecting duct cells.
View Article and Find Full Text PDFThe transcription factor TonEBP/OREBP promotes cell survival during osmotic stress. High NaCl-induced phosphorylation of TonEBP/OREBP at tyrosine-143 was known to be an important factor in increasing its activity in cell culture. We now find that TonEBP/OREBP also is phosphorylated at tyrosine-143 in rat renal inner medulla, dependent on the interstitial osmolality.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2010
Vasopressin-regulated urea transport in the renal inner medullary collecting duct (IMCD) is mediated by two urea channel proteins, UT-A1 and UT-A3, derived from the same gene (Slc14a2) by alternative splicing. The NH(2)-terminal 459 amino acids are the same in both proteins. To study UT-A1/3 phosphorylation, we made phospho-specific antibodies to UT-A sequences targeting phospho-serines at positions 84 and 486, sites identified previously by protein mass spectrometry.
View Article and Find Full Text PDF