Ti/HfO-based resistive random access memory (RRAM) has been extensively investigated as an emerging nonvolatile memory (NVM) candidate due to its excellent memory performance and CMOS process compatibility. Although the importance of the role of the Ti buffer layer is well recognized, detailed understanding about the nature of Ti thickness-dependent asymmetric switching is still missing. To realize this, the present work addresses the effects of Ti buffer layer thickness on the switching properties of TiN/Ti/HfO/TiN 1T1R RRAM.
View Article and Find Full Text PDFThe reversion of polarity within bipolar resistive switching operation occurs in Pt/HfO2/TiN and Pt/Hf/HfO2/TiN resistive random access memory devices. This reversion of voltage polarity is the result of interface generation which induces a conduction mechanism transformation from Poole-Frenkel emission to space charge limited current mechanism. To prove the reversion of polarity, this study uses curve fitting of I-V relations to verify the conduction mechanism theoretically and physical analysis to verify the oxygen ion distribution practically.
View Article and Find Full Text PDFWe demonstrate enhanced repeatable nanoscale bipolar resistive switching memory characteristics in Al/Cu/Ge0.5Se0.5/W, as compared with Al/Cu/Ge0.
View Article and Find Full Text PDFExcellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface under low voltage operation of ± 1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA.
View Article and Find Full Text PDFImproved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2011
Performance of phase-change materials based on Ga-Te-Sb was found getting better with decreasing Te content in our earlier studies. We concerned much properties of Te-free, Sb-rich binary Ga-Sb, which has been known to possess extremely fast crystallization behavior. Non-isothermal and isothermal crystallization kinetics of amorphous Sb-rich Ga-Sb films were explored by temperature dependent electrical resistance measurements.
View Article and Find Full Text PDFIn this paper, reliability issues of robust HfO(x)-based RRAM are experimentally investigated in terms of cycling ageing, temperature impact and voltage acceleration. All reliability issues can be estimated by the conduction of the high resistance state (HRS). The conduction current of the HRS exponentially increases as the square root of the applied voltage, which is well explained by 'quasi-Poole-Frenkel-type' trap assistant tunneling.
View Article and Find Full Text PDFIn this paper, we report on the formation and rupture of Ag nanofilament on planar Ag/TiO2/Pt cells using visual observation. During the forming process, the filament tends to stay very thin. Specifically, it is so thin that it breaks up into a chain of nanospheres (according to Rayleigh instability) right after the formation has been completed.
View Article and Find Full Text PDF