A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
View Article and Find Full Text PDFBrønsted-acid-catalyzed allylic substitution reactions of the in situ generated 3-hydroxy indanones with alcohols and sulfamides were investigated, which provided a facile route for the synthesis of a large variety of 3-alkoxy and 3-sulfamido indanones. The key intermediates, 3-hydroxy indanones, were obtained through the intramolecular Meyer-Schuster rearrangement of o-propargyl alcohol benzaldehydes. The resulting 3-benzyloxy indanone could be selectively modified by allylic sulfonamidation and reduction reactions.
View Article and Find Full Text PDFA one-pot approach to substituted 1,2,4-triazolo[4,3-]pyridines has been developed that is based on a KI-catalyzed oxidative cyclization of α-keto acids and 2-hydrazinopyridines. This transition-metal-free procedure was highly efficient and shows good economical and environmental advantages.
View Article and Find Full Text PDFA KSO/TEMPO-induced oxidative cyclization of N-unprotected enaminoesters and enaminones that gave 1 H-pyrrol-2(3 H)-ones in good yields with broad functional group compatibility is reported. This method provides easy access to 1,2-carbon migration of ester or acyl group under transition-metal-free conditions.
View Article and Find Full Text PDFA facile synthesis of 2-amino-1,3-oxazoles via Cu -catalyzed oxidative cyclization of enamines and N,N-dialkyl formamides has been developed. The reaction proceeds through an oxidative C-N bond formation, followed by an intramolecular C(sp )-H bond functionalization/C-O cyclization in one pot. This protocol provides direct access to useful 2-amino-1,3-oxazoles and features protecting-group-free nitrogen sources, readily available starting materials, a broad substrate scope and mild reaction conditions.
View Article and Find Full Text PDFA novel KSO-promoted oxidative cyclization of enamines is described. A variety of enamines having diverse functional groups and substitution patterns react well using KSO as the oxidant in the absence of catalyst. This protocol provides a very simple route for the synthesis of polycarbonyl pyrroles and has the advantages of readily available starting materials, mild reaction conditions, and a wide scope of substrates.
View Article and Find Full Text PDFThe development of intermolecular [2 + 2]-cycloaddition of α-iodo-unsaturated ketones in the presence of diisobutylaluminum hydride (Dibal-H) is reported to produce various trispirocyclic derivatives containing a cyclobutane ring. This sequential lactonization/[2 + 2]-cycloaddition proceeds in high regioselectivity under mild conditions.
View Article and Find Full Text PDF