Water Sci Technol
February 2022
ReliefF algorithm was used to analyze the weight of each water quality evaluation factor, and then based on the Relevance Vector Machine (RVM), Particle Swarm Optimization (PSO) was used to optimize the kernel width factor and hyperparameters of RVM to build a water quality evaluation model, and the experimental results of RVM, PSO-RVM, ReliefF-RVM and PSO-ReliefF-RVM were compared. The results show that ReliefF algorithm, combined with threshold value, selects 5 evaluation factors with significant weight from eight evaluation factors, which reduces the amount of data used in the model, CSI index is used to calculate the separability of each evaluation factor combination. The results show that the overall separability of the combination is best when the evaluation factor with significant weight is reserved.
View Article and Find Full Text PDF