Telomerase reverse transcriptase (TERT) contributes to the prevention of aging by a largely unknown mechanism that is unrelated to telomere lengthening. The current study used ataxia-telangiectasia mutated (ATM) and TERT doubly deficient mice to evaluate the contributions of 2 aging-regulating molecules, TERT and ATM, to the aging process. ATM and TERT doubly deficient mice demonstrated increased progression of aging and had shorter lifespans than ATM-null mice, while TERT alone was insufficient to affect lifespan.
View Article and Find Full Text PDFAim: To investigate the effect of compound Danshen injection on lipopolysaccharide (LPS)-induced rat mesenteric microcirculatory dysfunctions and the underlying possible mechanism by an inverted intravital microscope and high-speed video camera system.
Methods: LPS was continuously infused through the jugular artery of male Wistar rats at the dose of 2 mg/kg per hour. Changes in mesenteric microcirculation, such as diameters of arterioles and venules, velocity of RBCs in venules, leukocyte rolling, adhesion and emigration, free radicals released from post-capillary venules, FITC-albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope assisted with CCD camera and SIT camera.
Red wine polyphenol, trans-resveratrol (trans-3,4',5-trihydroxy stilbene), has potent chemopreventive effects against various tumors. In this study, we found for the first time that resveratrol rapidly induces S phase cell cycle arrest of human malignant B cells including myeloma cells in dose- and time-dependent manners, followed by S phase cell cycle arrest through ATM/Chk pathway. Resveratrol-induced apoptosis occurs in association with the activation of caspase-3 and the loss of mitochondrial transmembrane potentials.
View Article and Find Full Text PDF1'-Acetoxychavicol acetate (ACA) is a component of a traditional Asian condiment obtained from the rhizomes of the commonly used ethno-medicinal plant Languas galanga. Here, we show for the first time that ACA dramatically inhibits the cellular growth of human myeloma cells via the inhibition of nuclear factor kappaB (NF-kappaB) activity. In myeloma cells, cultivation with ACA induced G0-G1 phase cell cycle arrest, followed by apoptosis.
View Article and Find Full Text PDF