Publications by authors named "Ming-Hung Ling"

Unlabelled: Reducing the dosage required for vaccination is highly desirable, particularly in cases of epidemic emergencies. This study evaluated the potential of a chitosan microneedle (MN) system with a patch-dissolvable design for low-dose immunization. This system comprises antigen-loaded chitosan MNs and a hydrophilic polyvinyl alcohol/polyvinyl pyrrolidone supporting array patch, which provides extra strength to achieve complete MN insertion and then quickly dissolves in the skin to reduce patch-induced skin irritation.

View Article and Find Full Text PDF

Adequate pain control can be achieved using a patient-controlled drug delivery system that can provide analgesia to patients as needed. To achieve this objective, we developed a phototriggered microneedle (MN) system that enables the on-demand delivery of pain medications to the skin under external near-infrared (NIR) light stimulation. In this system, polymeric MNs, containing NIR absorbers and analgesics, are combined with a poly(l-lactide-co-d,l-lactide) supporting array.

View Article and Find Full Text PDF

Because of the aggressive and recurrent nature of cancers, repeated and multimodal treatments are often necessary. Traditional cancer therapies have a risk of serious toxicity and side effects. Hence, it is crucial to develop an alternative treatment modality that is minimally invasive, effectively treats cancers with low toxicity, and can be repeated as required.

View Article and Find Full Text PDF

Unlabelled: Incomplete insertion is a common problem associated with polymer microneedles (MNs) that results in a limited drug delivery efficiency and wastage of valuable medication. This paper presents a fully insertable MN system that is composed of poly-γ-glutamic acid (γ-PGA) MNs and polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) supporting structures. The PVA/PVP supporting structures were designed to provide an extended length for counteracting skin deformation during insertion and mechanical strength for fully inserting the MNs into the skin.

View Article and Find Full Text PDF

This study presents near-infrared (NIR) light-responsive polymer-nanostructure composite microneedles used for on-demand transdermal drug delivery. Silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures were incorporated into polycaprolactone microneedles, serving as an NIR absorber. When the microneedles were irradiated with NIR light, light-to-heat transduction mediated by the LaB6@SiO2 nanostructures caused the microneedle melting at 50 °C.

View Article and Find Full Text PDF

We established near-infrared (NIR)-light-triggered transdermal delivery systems by encapsulating NIR absorbers, silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures and the cargo molecule to be released in biodegradable polycaprolactone (PCL) microneedles. Acting as a local heat source when exposed to an NIR laser, these nanostructures cause a phase transition of the microneedles, thereby increasing the mobility of the polymer chains and triggering drug release from the microneedles. On IR thermal images, the light-triggered melting behavior of the LaB6@SiO2-loaded microneedles was observed.

View Article and Find Full Text PDF

This study presents a dissolving microneedle patch, composed of starch and gelatin, for the rapid and efficient transdermal delivery of insulin. The microneedles completely dissolve after insertion into the skin for 5 min, quickly releasing their encapsulated payload into the skin. A histological examination shows that the microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin to a depth of approximately 200 μm and in vivo into rat skin to 200-250 μm depth.

View Article and Find Full Text PDF

This study introduces a microneedle transdermal delivery system, composed of embeddable chitosan microneedles and a poly(L-lactide-co-D,L-lactide) (PLA) supporting array, for complete and sustained delivery of encapsulated antigens to the skin. Chitosan microneedles were mounted to the top of a strong PLA supporting array, providing mechanical strength to fully insert the microneedles into the skin. When inserted into rat skin in vivo, chitosan microneedles successfully separated from the supporting array and were left within the skin for sustained drug delivery without requiring a transdermal patch.

View Article and Find Full Text PDF

This paper introduces a chitosan microneedle patch for efficient and sustained transdermal delivery of hydrophilic macromolecules. Chitosan microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin at approximately 250 μm in depth and in vivo into rat skin at approximately 200 μm in depth. Bovine serum albumin (BSA, MW=66.

View Article and Find Full Text PDF

In this work, fluorescently labeled smart micelle copolymers which consist of Dioctadecylamine-501 (DODA-501) as the hydrophobic segment, N-isopropylacrylamide (NIPAAm) as well as acrylic acid (AAc) as the hydrophilic segments were prepared. These micelles showed both thermo- and pH-sensitive properties due to the nature properties of NIPAAm and AAc, respectively. The particle size of the prepared micelles ranged from 94 approximately 200 nm and was found to increase with DODA-501 concentration.

View Article and Find Full Text PDF

In order to avoid anti-cancer drugs undergoing a first-pass effect and reduce their toxicity, and to solve conventional suppositories defects, we developed an in-situ-gelling and injectable Pluronic-poly(acrylic acid) (Pluronic-PAA) liquid suppository, which could gel fast in the physiological state and had suitable gel strength and bioadhesive force. The liquid suppositories were inserted into the rectum of rabbits without difficulty and leakage, and retained in the rectum for at least 6 h and while releasing the drug. The toxicity and cytotoxic tests indicated that Pluronic and PAA were non-toxic materials and could inhibit colon cancer cells when oxaliplatin was incorporated.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed poly(acrylic) acid (PAA)-based hydrogels using UV polymerization, which incorporated alginate to create an interpenetrating network structure.
  • Adding nano-silica enhanced the hydrogels' compressive strength and toughness, while reducing cross-linking density and friction.
  • The hydrogels demonstrated high water content (over 98%) and showed good compatibility with adipose stem cells, indicating their potential for use as artificial soft tissues.
View Article and Find Full Text PDF