The emergence and re-emergence of disease epidemics is a complex question that may be influenced by diverse factors, including the space-time dynamics of human populations, environmental conditions, and associated uncertainties. This study proposes a stochastic framework to integrate space-time dynamics in the form of a Susceptible-Infected-Recovered (SIR) model, together with uncertain disease observations, into a Bayesian maximum entropy (BME) framework. The resulting model (BME-SIR) can be used to predict space-time disease spread.
View Article and Find Full Text PDFTwo new molecules, CzFCBI and CzFNBI, have been tailor-made to serve as bipolar host materials to realize high-efficiency electrophosphorescent devices. The molecular design is configured with carbazole as the hole-transporting block and N-phenylbenzimidazole as the electron-transporting block hybridized through the saturated bridge center (C9) and meta-conjugation site (C3) of fluorene, respectively. With structural topology tuning of the connecting manner between N-phenylbenzimidazole and the fluorene core, the resulting physical properties can be subtly modulated.
View Article and Find Full Text PDF