C-reactive protein (CRP) is a clinical biomarker of inflammation, and high levels of CRP correlate with cardiovascular disease. The objectives of this study were to test our hypothesis that oxidized low-density lipoprotein (ox-LDL) induces the release of CRP from human aortic endothelial cells (HAECs) and to optimize several analytical methods to identify CRP released from cultured cells in a model of atherogenic stress. HAECs were incubated with copper-oxidized LDL, and the supernatant was subsequently purified by diethylaminoethyl chromatography and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFPhospholipids of in vitro oxidized human low-density lipoproteins (LDL) were separated by two different solid-phase extraction (SPE) methods. One of the two methods was designed to test the effects of gradient elution. This SPE method isolated more phospholipids from in vitro oxidized LDL than the other one according to the results of liquid chromatography and electrospray ionization mass spectrometry (LC ESI-MS) analysis.
View Article and Find Full Text PDFA simple and fast micellar electrokinetic chromatography (MEKC) method was developed to investigate phospholipids isolated from human high-density lipoproteins (HDL). To optimize the MEKC conditions, several factors including bile salt concentration and organic modifier concentration in the separation buffer as well as temperature have been examined. The optimal separation buffer chosen was a mixture of 50 mM bile salts, 30% v/v 1-propanol and 10 mM sodium phosphate (pH 8.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2008
A simple capillary zone electrophoresis (CZE) method was used to determine native, in vitro Cu(2+) and glucose modified low-density lipoprotein (LDL) particles for four healthy subjects. The LDL electropherograms are highly reproducible with good precisions of effective mobility and peak area. The native LDL capillary electrophoresis (CE) profile shows a major peak with lower mobility and two minor peaks with higher mobilities.
View Article and Find Full Text PDF