Nature preprograms sophisticated processes in operating molecular machines at the nanoscale, amplifying the molecular motion across multiple length-scales, and controlling movements in living organisms. Supramolecular soft robotics serve as a new alternative to hard robotics, are able to transform and amplify collective motions of the supramolecularly assembled molecular machines in attaining macroscopic motions, upon photoirradiation. By taking advantage of oriented supramolecular macroscopic soft scaffold, here the first rapid macroscopic movements of supramolecular robotic materials driven by visible light are presented.
View Article and Find Full Text PDFIn the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety.
View Article and Find Full Text PDFInvited for this month's cover are the collaborating groups of Prof. Man-Kin Wong and Dr. Franco King-Chi Leung from The Hong Kong Polytechnic University.
View Article and Find Full Text PDFGold (III) cyclometalated based amphiphiles in aqueous media have been revealed with excellent supramolecular transformations to external stimuli to open new pathways for soft functional material fabrications. Herein, we report a new chiral cyclometalated gold (III) amphiphile (GA) assembling into lamellar nanostructures in aqueous media confirmed with transmission electron microscopy (TEM). Counterion exchange with D-, L-, or racemic-camphorsulfonates features the significant supramolecular helicity enhancements, enabling transformations of GA from lamellar structure to vesicles and to nanotubes with multi-equivalents of counterion.
View Article and Find Full Text PDF