While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored.
View Article and Find Full Text PDFWhile better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored.
View Article and Find Full Text PDFThe castration-resistant (CR) prostate cancer (PCa) is lethal and is the second leading cause of cancer-related deaths in U.S. males.
View Article and Find Full Text PDFThe role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomics tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum (ER), magnifying normally difficult to detect subsets of the protein of interest. For PAcP, this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties.
View Article and Find Full Text PDFThe role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomic tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum, magnifying normally difficult to detect subsets of the protein of interest. For PAcP this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties.
View Article and Find Full Text PDFAm J Clin Exp Urol
February 2021
Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cause of cancer-related deaths in U.S. men in 2020.
View Article and Find Full Text PDFNew pregnene analogs of N-hydroxamic acid 6, imino-propane hydrazides 7 and 8 as well as the aryl amides 9-11, oxadiazole, pyrazole and sulfinyl analogs 13-15, via the hydrazide analog 5 of methyl ((5-pregnen-3β,17β-diol-15α-yl)thio)propanoate (4) were synthesized. The in vitro cytotoxic activities of selected synthesized steroids against two human prostate cancer cell lines (PC-3, and LNCaP-AI) were evaluated by MTT assay. Compound 10 was the most active cytotoxic agent among these steroids against PC-3 and LNCaP-AI cell lines with inhibition of 96.
View Article and Find Full Text PDFEndocr Relat Cancer
April 2019
Currently, prostate cancer (PCa) remains the most commonly diagnosed solid tumor and the second leading cause of cancer-related deaths in US men. Most of these deaths are attributed to the development of castration-resistant (CR) PCa. ErbB-2 and ErbB family members have been demonstrated to contribute to the progression of this lethal disease.
View Article and Find Full Text PDFProstate cancer (PCa) remains the second leading cause of cancer-related deaths in U.S. men due to the development of the castration-resistant (CR) PCa phenotype.
View Article and Find Full Text PDFThe standard-of-care treatment for metastatic prostate cancer (PCa) is androgen deprivation therapy (ADT). Nevertheless, most tumors eventually relapse and develop into lethal castration-resistant prostate cancer (CRPC). Docetaxel is a FDA-approved agent for the treatment of CRPC; however, the tumor often quickly develops resistance to this drug.
View Article and Find Full Text PDFMetastatic castration-resistant (CR) prostate cancer (PCa) is a lethal disease for which no effective treatment is currently available. p66Shc is an oxidase previously shown to promote androgen-independent cell growth through generation of reactive oxygen species (ROS) and is elevated in clinical PCa and multiple CR PCa cell lines. We hypothesize p66Shc also increases the migratory activity of PCa cells through ROS and investigate the associated mechanism.
View Article and Find Full Text PDFBackground: There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor.
Methods: Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry.
Background: Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells.
View Article and Find Full Text PDFThe treatment of castration-resistant (CR) prostate cancer (PCa) is limited. A sub-population of CR PCa tumors can synthesize androgens for intracrine androgen receptor (AR) activation, thus targeting androgen biosynthesis could be an effective therapeutic option for these patients. We determined that androgen biosynthesis inhibitors simvastatin, atorvastatin, and ketoconazole directly inhibit growth, migration, and colony formation of LNCaP C-81 cells, which exhibit androgen biosynthesis, with simvastatin being the most effective.
View Article and Find Full Text PDFDespite recent advances in modern medicine, castration-resistant prostate cancer remains an incurable disease. Subpopulations of prostate cancer cells develop castration-resistance by obtaining the complete steroidogenic ability to synthesize androgens from cholesterol. Statin derivatives, such as simvastatin, inhibit cholesterol biosynthesis and may reduce prostate cancer incidence as well as progression to advanced, metastatic phenotype.
View Article and Find Full Text PDFHistorically, androgen-deprivation therapy has been the cornerstone for treatment of metastatic prostate cancer. Unfortunately, nearly majority patients with prostate cancer transition to the refractory state of castration-resistant prostate cancer (CRPC). Newer therapeutic agents are needed for treating these CRPC patients that are unresponsive to androgen deprivation and/or chemotherapy.
View Article and Find Full Text PDFWhile androgen deprivation therapy (ADT) reduces tumor burden, autocrine growth factor loops such as human epidermal growth factor receptor 2 (HER2/ErbB-2/neu) have been proposed to contribute to prostate cancer (PCa) survival and relapse. However, the role of ErbB-2 in regulating androgen-sensitive (AS) and castration-resistant (CR) cell proliferation remains unclear. Here, we determined the role of ErbB-2 in PCa progression and survival under steroid-reduced conditions using two independent PCa cell progression models.
View Article and Find Full Text PDFBackground: Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant (CR).
View Article and Find Full Text PDFProstate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains.
View Article and Find Full Text PDFThe establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel.
View Article and Find Full Text PDFA number of N-alkylated 4-anilinofuro[2,3-b]quinoline derivatives were synthesized and evaluated in vitro against PC-3, A549, and MCF-7 cancer cells and M-10 normal human mammary epithelial cells. The known antimitotic CIL-102 was moderately active against the growth of PC-3 prostate cancer cells with an IC50 value of 2.69 μM while it was more potent against the growth of A549, MCF-7 and M-10 cells with IC50 values of 0.
View Article and Find Full Text PDF1α-25(OH)2 vitamin D3 (1-25D), an active hormonal form of Vitamin D3, is a well-known chemopreventive and pro-differentiating agent. It has been shown to inhibit the growth of several prostate cancer cell lines. Gap junctions, formed of proteins called connexins (Cx), are ensembles of cell-cell channels, which permit the exchange of small growth regulatory molecules between adjoining cells.
View Article and Find Full Text PDFMetastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared.
View Article and Find Full Text PDFThe inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative.
View Article and Find Full Text PDF