Publications by authors named "Ming-Chia Li"

While luminescent stimuli-responsive materials (LSRMs) have become one of the most sought-after materials owing to their potential in optoelectronic applications, the use of earth-scarce lanthanides remains a crucial problem to be solved for further development. In this work, two manganese-based LSRMs, ()-(+)-1-phenylethylammonium manganese bromide, (R-PEA)MnBr, and ()-(-)-1-phenylethylammonium manganese bromide, (S-PEA)MnBr, are successfully demonstrated. Both (R-PEA)MnBr and (S-PEA)MnBr show a kinetically stable red-emissive amorphous state and a thermodynamically stable green-emissive crystalline state at room temperature, where the fully reversible transition can be done through melt-quenching and annealing processes.

View Article and Find Full Text PDF

This work aims to examine the effect of self-assembly on the chiroptic responses of the achiral block copolymer (BCP) polystyrene--poly(ethylene oxide) (PS--PEO) associated with chiral luminophores, ()- or ()-1,1'-bi-2-naphthol (()- or ()-BINOL), through hydrogen bonding. With the formation of a well-ordered helical phase (H*), significantly induced circular dichroism (ICD) signals for the PEO block in the mixture can be found. Most interestingly, a remarkable amplification with an extremely large dissymmetry factor of luminescence () from 10 to 0.

View Article and Find Full Text PDF

We report the preparation of chiral silica using a linear polysiloxane main chain with a preferred-handed helical structure as the template. Poly(methylvinyl siloxane) (PMVS) with a cysteine derivative side chain designated as PMVS-Cys was prepared using anionic polymerization and an ene-thiol reaction. PMVS-Cys forms a helical conformation in both solution and film via hydrogen bonding between amide groups at side chains.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is typically achieved with a chiral luminophore. However, using a helical nanosized fused quartz cell consisting of chiral silica, we could control the wavelength and helical sense of the CPL of an achiral luminophore. Chiral silica with a helical nanostructure was prepared by calcining a mixture of polyhedral oligomeric silsesquioxane (POSS)-functionalized isotactic poly(methacrylate) (-PMAPOSS) and a small amount of chiral dopant.

View Article and Find Full Text PDF

Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties.

View Article and Find Full Text PDF

This paper presents a facile method for fabricating a thin-film sample with a high asymmetry value of induced circularly polarized luminescence (iCPL) (|g| = 2.0 × 10). The method involves mixing stereoregular poly(methyl methacrylate) (PMMA) and chiral chromophore (2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE)) to form a complex with a dynamic helical conformation of poly(methyl methacrylate) (PMMA) associated with TFAE via hydrogen bonding.

View Article and Find Full Text PDF

Background: The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals.

Methods: According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized.

View Article and Find Full Text PDF
Article Synopsis
  • Silk fibroin (SF) dressings are being studied for their ability to enhance burn wound healing, with a focus on the effects of its β-sheet structure compared to the more well-studied α-helices.
  • Research shows that β-sheet SF promotes key healing processes like granulation formation and cell migration, particularly in human dermal fibroblasts, through the interaction of integrin β1 and extracellular matrix proteins.
  • The study suggests that lyophilized SF dressings could be effective in clinical settings for burn recovery and could be further improved by incorporating anti-inflammatory agents, growth factors, or antibiotics for better outcomes.
View Article and Find Full Text PDF

A strategy to obtain chiral silica using an achiral stereoregular polymer with polyhedral oligomeric silsesquioxane (POSS) side chains is described herein. The preferred helical conformation of the POSS-containing polymer could be achieved by mixing isotactic polymethacrylate-functionalized POSS (-PMAPOSS) and a chiral dopant. The array structure of POSS molecules, which are placed along the helical conformation, is memorized even after removing the chiral dopant at high temperatures, leading to a chiral silica compound with exclusive optical activity after calcination.

View Article and Find Full Text PDF

The juxta-anastomotic stenosis of an arteriovenous fistula (AVF) is a significant clinical problem in hemodialysis patients with no effective treatment. Previous studies of AV anastomotic angles on hemodynamics and vascular wall injury were based on computational fluid dynamics (CFD) simulations using standardized AVF geometry, not the real-world patient images. The present study is the first CFD study to use angiographic images with patient-specific outcome information, i.

View Article and Find Full Text PDF

In 2001, Kennedy et al. [Amer. Math.

View Article and Find Full Text PDF

This investigation reports the nanostructural evolution and associated encapsulation and elution of a hydrophobic drug, demethoxycurcumin (DMC), as a molecular probe, with the carboxymethyl-hexanoyl chitosan (CHC), which has been a technically interesting amphiphilic chitosan-based polymer successfully developed in this lab for years. The self-assembly nature of the CHC in neutral aqueous solutions allowed efficient encapsulation of various drugs without deteriorating or changing drugs' activity. However, its self-assembly behavior associated with nanostructural stability or variation, in terms of residence time in aqueous solution has not been well characterized and how the CHC nanostructure may be altered upon entrapping a drug, followed releasing out of the nanostructure.

View Article and Find Full Text PDF

Surface topography has a profound effect on the development of the nervous system, such as neuronal differentiation and morphogenesis. While the interaction of neurons and the surface topography of their local environment is well characterized, the neuron-topography interaction during the regeneration process remains largely unknown. To address this question, an anisotropic surface topography resembling linear grooves made from poly(ethylene-vinyl acetate) (EVA), a soft and biocompatible polymer, using nanoimprinting, is established.

View Article and Find Full Text PDF

Optic neuropathies, such as glaucoma and Leber's hereditary optic neuropathy (LHON) lead to retinal ganglion cell (RGC) loss and therefore motivate the application of transplantation technique into disease therapy. However, it is a challenge to direct the transplanted optic nerve axons to the correct location of the retina. The use of appropriate scaffold can promote the proper axon growth.

View Article and Find Full Text PDF

Here, we show the induced chirality of an achiral chromophoric dye as a joint of polylactide-containing chiral block copolymers (BCPs*) driven by self-assembly, giving the achiral dyes preferentially arranged in a one-handed helical array at the microphase-separated interface. This helical arrangement of the achiral dyes can be "memorized" after hydrolysis of the polylactides in the BCPs* and serves as a chiral template for further chirality induction of different achiral dyes, probably through attractive aromatic π-π interactions at the interface, producing nanostructured chiral materials with tunable circular dichroism signals at desired wavelengths.

View Article and Find Full Text PDF

The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*).

View Article and Find Full Text PDF

Banded spherulites are formed by crystallization of a chiral polymer that is end-capped with chromophore. Induced circular dichroism (ICD) of the chromophore can be found in the crystallized chiral polymers, giving exclusive optical response of the ICD. The ICD signals are presumed to be driven by the lamellar twisting in the crystalline spherulites, and the exclusive optical activity is attributed to the chirality transfer from molecular level to macroscopic level.

View Article and Find Full Text PDF

This paper analyzes the dynamics in an overlapping generations model with the provision of child allowances. Fertility is an increasing function of child allowances and there exists a threshold effect of the marginal effect of child allowances on fertility. We show that if the effectiveness of child allowances is sufficiently high, an intermediate-sized tax rate will be enough to generate chaotic dynamics.

View Article and Find Full Text PDF

Here, we develop a method to fabricate stimuli-responsive color films using block copolymer, poly(4-vinylpyridine)-b-poly(ε-caprolactone) (P4VP-PCL), as a template complexed with functionalized chromophores. The P4VP block in the P4VP-PCL can be associated with a cyano end-capped chromophore via charge transfer, which is a noncovalent interaction that can be conveniently manipulated by external stimuli, giving a specific color. The color of the film can be switched by tuning the charge transfer interaction between the chromophore and P4VP with controlled environmental conditions, such as pH, temperature, and moisture, while maintaining high transmittance for visible light due to the formation of the nanostructure of chromophore/P4VP-PCL complex.

View Article and Find Full Text PDF

This work presents a simple method to generate ordered chromophore/dispersant nanoarrays through a pore-filling process for a nanoporous polymer template to enhance chromophore luminescence. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy reveal that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of the template are completely filled by the chromophore/dispersant mixture. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of chromophore and dispersant, that is, the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform IR spectroscopy combining with grazing incident wide-angle X-ray diffraction.

View Article and Find Full Text PDF

Here, we report the mechanisms of chiral transfer at various length scales in the self-assembly of enantiomeric chiral block copolymers (BCPs*). We show the evolution of homochirality from molecular chirality into phase chirality in the self-assembly of the BCPs*. The chirality of the molecule in the BCP* is identified from circular dichroism (CD) spectra, while the handedness of the helical conformation in the BCP* is determined from a split-type Cotton effect in vibrational circular dichroism spectra.

View Article and Find Full Text PDF

Stereoregular vinyl polymers, poly(2-vinyl pyridine)s (P2VPs), were synthesized to examine the tacticity effect on the induced circular dichroism (ICD) via association with chiral acids. The ICD was found to be strongly dependent on the isotacticity of the P2VPs and the acidity of chiral acid in addition to its bulkiness.

View Article and Find Full Text PDF

A series of semicrystalline block copolymers (BCPs), poly(4-vinylpyridine)-block-poly(ε-caprolactone) (P4VP-PCL), with lamellar phases have been synthesized. P4VP-PCL BCP thin films with large-scale, oriented lamellar microdomains were obtained by rimming coating process followed by oscillated shearing using a homemade shear device. Owing to the vitrified P4VP microdomains and strongly segregated microphase separation, specific PCL crystalline chain orientation can be formed from the growth of anisotropic PCL crystallites under confinement so as to uniformly increase the birefringence of the BCP thin films.

View Article and Find Full Text PDF