Publications by authors named "Ming-Bin Yu"

We report the demonstration of a germanium waveguide p-i-n photodetector (PD) for the C + L band light detection. Tensile strain is transferred into the germanium layer using a SiN stressor on top surface of the germanium. The simulation and experimental results show that the trenches must be formed around the device, so that the strain can be transferred effectively.

View Article and Find Full Text PDF

We present the design of -on-Si waveguide photodetectors for the applications in the C- to U-bands. The GeSn photodetectors have been studied in respect to responsivity, dark current, and bandwidth, with light butt- or evanescent-coupled from an Si waveguide. With the introduction of 4.

View Article and Find Full Text PDF

In this paper, an efficient and novel optical fiber-to-waveguide mode size converter for Si Photonics devices with sub-micron waveguides is developed on the SOI platform. This optical converter is composed of a suspended SiO(2) waveguide and overlapped Si nano-tapers located in the center of suspended SiO(2) waveguide. Laterally connected SiO(2) beams provide structural support for the suspended SiO(2) waveguide.

View Article and Find Full Text PDF

We demonstrated a high performance monolithically integrated multi-channel receiver fabricated on the SOI platform. This receiver is composed of a 1 x 8 Si-based ring-resonators filter and an array of high speed waveguided Ge-on-Si photodetectors. The optical channel spacing is about 1.

View Article and Find Full Text PDF

A high performance monolithically integrated WDM receiver is fabricated on the SOI platform, with key components comprising a 1 x 32 Si-based AWG and an array of high speed waveguided Ge-on-Si photodetectors. The optical channel spacing is 200 GHz. This configuration was used to demonstrate 32-channel operation in the L-band, where it is particularly challenging for silicon photonics due to the low absorption coefficient of Ge at L-band wavelengths.

View Article and Find Full Text PDF

New design of optical waveguides is presented to synthesize Bragg grating waveguides without inducing birefringence. In the design, waveguide core has a thin trench on the top surface of the core and width of the trench is modulated concurrently with width modulation of the waveguide core. Effective refractive index profiles in Bragg grating waveguides are obtained by a differential inverse scattering algorithm and converted to waveguide width profiles by using the new core design.

View Article and Find Full Text PDF