Publications by authors named "Ming Yi Lee"

Patients benefit greatly from early detection of colorectal cancer, but present diagnostic procedures have high costs, low sensitivity, and low specificity. However, it is still difficult to develop a strategy that can effectively detect cancer early using high-throughput blood analysis. Fano resonance-boosted SERS platform label-free serum creates an effective diagnostic system at the point of care.

View Article and Find Full Text PDF

The purpose of this study was to investigate whether and how albiflorin, a natural monoterpene glycoside, affects the release of glutamate, one of the most important neurotransmitters involved in neurotoxicity, from cerebrocortical nerve terminals (synaptosomes) in rats. The results showed that albiflorin reduced 4-aminopyridine (4-AP)-elicited glutamate release from synaptosomes, which was abrogated in the absence of extracellular Ca or in the presence of the vesicular glutamate transporter inhibitor or a P/Q-type Ca channel inhibitor, indicating a mechanism of action involving Ca-dependent depression of vesicular exocytotic glutamate release. Albiflorin failed to alter the increase in the fluorescence intensity of 3,3-diethylthiacarbocyanine iodide (DiSC(5)), a membrane-potential-sensitive dye.

View Article and Find Full Text PDF

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC value of 16 μM.

View Article and Find Full Text PDF

Glutamate is a major excitatory neurotransmitter that mediates neuronal damage in acute and chronic brain disorders. The effect and mechanism of phillygenin, a natural compound with neuroprotective potential, on glutamate release in isolated nerve terminals (synaptosomes) prepared from the rat cerebral cortex were examined. In this study, 4-aminopyridine (4-AP), a potassium channel blocker, was utilized to induce the release of glutamate, which was subsequently quantified via a fluorometric assay.

View Article and Find Full Text PDF

New palladium(0) and palladium(ii) complexes with -heterocyclic carbene (NHC) ligands derived from nitron and its derivatives were synthesized. The structures of most of these complexes were established by single-crystal X-ray diffraction studies. Among the new complexes, the palladium complex with a monodentate NHC ligand derived from nitron demonstrated the highest efficacy as a catalyst precursor in the Mizoroki-Heck coupling reaction of aryl chlorides with alkenes.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effect of cynarin, a caffeoylquinic acid derivative in artichoke, on glutamate release elicited by 4-aminopyridine (4-AP) in rat cortical nerve terminals (synaptosomes). We observed that cynarin decreased 4-aminopyridine-elicited glutamate release, which was prevented by the removal of external free Ca with ethylene glycol bis (β-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) or the blockade of P/Q-type calcium channels with ω-agatoxin IVA. Molecular docking also revealed that cynarin formed a hydrogen bond with the P/Q-type Ca channel, indicating a mechanism of action involving Ca influx inhibition.

View Article and Find Full Text PDF

Mangiferin is a glucosyl xanthone that has been shown to be a neuroprotective agent against brain disorders involving excess glutamate. However, the effect of mangiferin on the function of the glutamatergic system has not been investigated. In this study, we used synaptosomes from the rat cerebral cortex to investigate the effect of mangiferin on glutamate release and identify the possible underlying mechanism.

View Article and Find Full Text PDF

Inhibiting the excessive release of glutamate in the brain is emerging as a promising therapeutic option and is efficient for treating neurodegenerative disorders. The aim of this study is to investigate the effect and mechanism of plantainoside D (PD), a phenylenthanoid glycoside isolated from L., on glutamate release in rat cerebral cortical nerve terminals (synaptosomes).

View Article and Find Full Text PDF

The inhibition of synaptic glutamate release to maintain glutamate homeostasis contributes to the alleviation of neuronal cell injury, and accumulating evidence suggests that natural products can repress glutamate levels and associated excitotoxicity. In this study, we investigated whether eupatilin, a constituent of , affected glutamate release in rat cortical nerve terminals (synaptosomes). Additionally, we evaluated the effect of eupatilin in an animal model of kainic acid (KA) excitotoxicity, particularly on the levels of glutamate and N-methyl-D-aspartate (NMDA) receptor subunits (GluN2A and GluN2B).

View Article and Find Full Text PDF

This study aimed to evaluate the antiglycation effects of adlay on protein glycation using in vitro glycation assays. Adlay seed was divided into the following four parts: the hull (AH), testa (AT), bran (AB), and polished adlay (PA). A solvent extraction technique and column chromatography were utilized to investigate the active fractions and components of adlay.

View Article and Find Full Text PDF

Excessive glutamate release is known to be involved in the pathogenesis of neurological diseases, and suppression of glutamate release from nerve terminals is considered to be a treatment strategy. In this study, we investigated whether isosaponarin, a flavone glycoside isolated from wasabi leaves, could affect glutamate release in rat cerebral cortex nerve terminals (synaptosomes). The release of glutamate was evoked by the K channel blocker 4-aminopyridine (4-AP) and measured by an online enzyme-coupled fluorimetric assay.

View Article and Find Full Text PDF

The inhibition of the excessive release of glutamate in the brain has emerged as a promising new option for developing therapeutic strategies for neurodegenerative disorders. This study investigated the effect and mechanism of lappaconitine, a diterpenoid alkaloid found in species of Aconitum, on glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Here, we report that in the rat cortical synaptosomal preparation, lappaconitine reduced the K channel blocker 4-aminopyridine (4-AP)-evoked Ca-dependent release of glutamate.

View Article and Find Full Text PDF

Several plant compounds have been found to possess neuroactive properties. The aim of this study was to investigate the anticonvulsant effect of eupafolin, a major active component extracted from , a herb used in traditional medicine for its anti-inflammatory properties. To this end, we assessed the anticonvulsant effects of eupafolin in rats intraperitoneally (i.

View Article and Find Full Text PDF

Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of neferine, an alkaloid from the lotus seed embryos of , in a kainic acid (KA)-induced seizure rat model and its underlying mechanisms.

View Article and Find Full Text PDF

The neurotransmitter glutamate plays an essential role in excitatory neurotransmission; however, excessive amounts of glutamate lead to excitotoxicity, which is the most common pathogenic feature of numerous brain disorders. This study aimed to investigate the role of butyl 2-[2-(2-fluorophenyl)acetamido]benzoate (HFP034), a synthesized anthranilate derivative, in the central glutamatergic system. We used rat cerebro-cortical synaptosomes to examine the effect of HFP034 on glutamate release.

View Article and Find Full Text PDF

Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from , possesses neuroprotective capacity.

View Article and Find Full Text PDF

This study investigated the effects of enmein, an active constituent of Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca and blocking vesicular glutamate transporters, N- and P/Q-type Ca channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein.

View Article and Find Full Text PDF

Reduction in glutamate release is a key mechanism for neuroprotection and we investigated the effect of isoliquiritigenin (ISL), an active ingredient of Glycyrrhiza with neuroprotective activities, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). ISL produced a concentration-dependent inhibition of glutamate release and reduced the intraterminal [Ca] increase. The inhibition of glutamate release by ISL was prevented after removing extracellular Ca or blocking P/Q-type Ca channels.

View Article and Find Full Text PDF

Cognitive impairment is not only associated with seizures but also reported as an adverse effect of antiepileptic drugs. Thus, new molecules that can ameliorate seizures and maintain satisfactory cognitive function should be developed. The antiepileptic potential of asiatic acid, a triterpene derived from the medicinal herb , has already been demonstrated; however, its role in epilepsy-related cognitive deficits is yet to be determined.

View Article and Find Full Text PDF

Glutamate is the major excitatory neurotransmitter in the brain and is involved in many brain functions. In this study, we investigated whether typhaneoside, a flavonoid from pollen, affects endogenous glutamate release from rat cortical synaptosomes. Using a one-line enzyme-coupled fluorometric assay, glutamate release stimulated by the K channel blocker 4-aminopyridine was monitored to explore the possible underlying mechanisms.

View Article and Find Full Text PDF

Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated.

View Article and Find Full Text PDF

Oxycodone, a semisynthetic opioid analgesic with actions similar to morphine, is extensively prescribed for treatment of moderate to severe acute pain. Given that glutamate plays a crucial role in mediating pain transmission, the purpose of this study was to investigate the effect of oxycodone on glutamatergic synaptic transmission in rat hippocampal CA3 area, which is associated with the modulation of nociceptive perception. Whole-cell patch-clamp recordings revealed that oxycodone effectively reduced presynaptic glutamate release, as detected by decreased frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), without eliciting significant changes in the amplitudes of sEPSCs and mEPSCs and glutamate-evoked inward currents.

View Article and Find Full Text PDF

Glutamatergic excitotoxicity is crucial in the pathogenesis of epileptic seizures. Dexmedetomidine, a potent and highly selective α2 adrenoceptor agonist, inhibits glutamate release from nerve terminals in rat cerebrocortical nerve terminals. However, the ability of dexmedetomidine to affect glutamate-induced brain injury is still unknown.

View Article and Find Full Text PDF

Background: Ropivacaine, a long-acting amide local anesthetic agent, has been demonstrated to inhibit glutamatergic transmission. Glutamate neurotoxicity plays a pivotal role in the pathogenesis of brain disorders. The purpose of this study is to investigate the neuroprotective effect of ropivacaine against brain damage induced by kainic acid (KA), an analogue of glutamate.

View Article and Find Full Text PDF