Publications by authors named "Ming O Li"

The rise of immunotherapy and mRNA vaccines has underscored the power of modulating the immune system for a desired response. In this Voices piece, the Cell Chemical Biology editors ask researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?

View Article and Find Full Text PDF

How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive transcription and loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit.

View Article and Find Full Text PDF

Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process.

View Article and Find Full Text PDF

Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell-directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module.

View Article and Find Full Text PDF

Antiviral immune mediators, including interferons and their downstream effectors, are critical for host defense yet can become detrimental when uncontrolled. Here, we identify a macrophage-mediated anti-inflammatory mechanism that limits type I interferon (IFN-I) responses. Specifically, we found that cellular stress and pathogen recognition induce Oncostatin M (OSM) production by macrophages.

View Article and Find Full Text PDF

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes.

View Article and Find Full Text PDF

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells. Tumours are metabolically active and are populated by stroma cells, but how environmental factors affect cancer cell competition remains largely unknown.

View Article and Find Full Text PDF

Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner.

View Article and Find Full Text PDF

T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation, which serves as an excellent example to dissect the metabolic basis of cell fate decisions. During the last decade, there has been an explosion of research into the metabolic control of T-cell responses. The roles of common metabolic pathways, including glycolysis, lipid metabolism, and mitochondrial oxidative phosphorylation, in T-cell responses have been well characterized, and their mechanisms of action are starting to emerge.

View Article and Find Full Text PDF

Here, we focus on tumor-associated macrophages (TAMs) in the PyMT model of breast cancer, detailing a protocol for assessing antigen presentation capabilities of immune populations of interest. We describe a stringent bone marrow chimera system to demonstrate presentation of exogenous antigen that is acquired and processed in the tumor microenvironment. We describe steps for testing antigen presentation activity of TAMs to CD8 T cells in vivo and ex vivo and the requirement for the transcription factor IRF8 in this function.

View Article and Find Full Text PDF

Group 1 innate lymphocytes are heterogeneous, and their ontogeny and function remain ambiguous. Here, we describe a protocol to measure cell ontogeny and effector functions of natural killer (NK) and ILC1 subsets based on current understanding of their differentiation pathways. We use cre drivers to genetically fate-map cells, tracking plasticity between mature NK and ILC1.

View Article and Find Full Text PDF

Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor.

View Article and Find Full Text PDF

The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself.

View Article and Find Full Text PDF

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8).

View Article and Find Full Text PDF

The mTORC1 pathway coordinates nutrient and growth factor signals to maintain organismal homeostasis. Whether nutrient signaling to mTORC1 regulates stem cell function remains unknown. Here, we show that SZT2 - a protein required for mTORC1 downregulation upon nutrient deprivation - is critical for hematopoietic stem cell (HSC) homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint blockade (ICB) is effective in tumors with high T cell presence but not in those with an immune-desert microenvironment, which are poorly understood.
  • Inactivation of polycomb-repressive complex 2 (PRC2) components, particularly EED and SUZ12, leads to an immune-desert tumor microenvironment by altering chromatin and reducing immune signaling.
  • Using modified vaccinia virus Ankara (MVA) to enhance immune cell infiltration in tumors lacking PRC2 showed promise in making these tumors more responsive to ICB, suggesting a potential therapeutic approach.
View Article and Find Full Text PDF

Unlabelled: It is poorly understood how the tumor immune microenvironment influences disease recurrence in localized clear-cell renal cell carcinoma (ccRCC). Here we performed whole-transcriptomic profiling of 236 tumors from patients assigned to the placebo-only arm of a randomized, adjuvant clinical trial for high-risk localized ccRCC. Unbiased pathway analysis identified myeloid-derived IL6 as a key mediator.

View Article and Find Full Text PDF

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8 T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival.

View Article and Find Full Text PDF

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αβ T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential (ILTCKs).

View Article and Find Full Text PDF

Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland.

View Article and Find Full Text PDF

The pore-forming toxin streptolysin-O (SLO) enables intracellular delivery of molecules up to 100 kDa and has been used for short-term delivery of membrane-impermeable substances to assess their effects on cellular activities. A limitation of this technique is the loss of intracellular components and the potential unpredicted alterations of cellular metabolism and signaling. This protocol, optimized for primary mouse T lymphocytes, describes steps for SLO-mediated cell membrane permeabilization and substance supplementation, followed by immunoblotting and immunofluorescent microscopy for assessing cellular effects.

View Article and Find Full Text PDF

Investigation of cancer as a cell-level disease has led to the development of cancer cell-directed therapies including cytotoxic T lymphocyte (CTL)-based immunotherapy; yet, many patients are refractory to these modalities of cancer treatment and acquired resistance frequently occurs. Of note, cancer environment controls the manifestation of cancerous cell phenotype. Helper T (Th) cells orchestrate immune defense responses targeting cancer cells as well as the tumor microenvironment.

View Article and Find Full Text PDF

TGFβ is crucial for the homeostasis of epithelial and neural tissues, wound repair, and regulating immune responses. Its dysregulation is associated with a vast number of diseases, of which modifying the tumor microenvironment is one of vital clinical interest. Despite various attempts, there is still no FDA-approved therapy to inhibit the TGFβ pathway.

View Article and Find Full Text PDF

The tumor immune microenvironment (TIME) is a complex ecosystem that contains adaptive and innate immune cells that have tumor-promoting and anti-tumor effects. There is still much to learn about the diversity, plasticity, and functions of innate immune cells in the TIME and their roles in determining the response to immunotherapies. Experts discuss recent advances in our understanding of their biology in cancer as well as outstanding questions and potential therapeutic avenues.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncjfbn6ikq4a2jj73qs4el7ivadvldm06): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once