Publications by authors named "Ming Feng Wei"

Article Synopsis
  • The study investigates how the cytotoxin-associated gene A (CagA) influences cell cycle progression in B lymphoma cells by activating nuclear factor of activated T cells (NFAT), which may affect the response to Helicobacter pylori eradication in gastric MALT lymphoma.
  • Researchers used three B-lymphoma cell lines and evaluated their response to H. pylori strains, measuring CagA expression, NFATc1 signaling, and cell cycle inhibitors.
  • Results show a significant link between CagA presence, nuclear NFATc1 localization, and responsiveness to treatment, suggesting that both CagA and NFATc1 may play roles in improving therapy outcomes for patients with gastric MALT lymphoma.
View Article and Find Full Text PDF

CDK4/6 inhibitors combined with endocrine therapy prolonged survival in hormone receptor (HR)-positive and HER2-negative advanced breast cancer. We investigated whether CDK4/6 inhibitors enhance radiosensitivity and their underlying mechanisms of this subtype of breast cancer. In vitro and in vivo experiments were conducted using two HR-positive and HER2-negative breast cancer cell lines (MCF-7 and T-47D), CDK4/6 inhibitors (ribociclib and palbociclib) and radiotherapy (RT) to assess the biological functions and mechanisms.

View Article and Find Full Text PDF

Postoperative radiotherapy remains the gold standard for malignant glioma treatment. Clinical limitations, including tumor growth between surgery and radiotherapy and the emergence of radioresistance, reduce treatment effectiveness and result in local disease progression. This study aimed to develop a local drug delivery system to inhibit tumor growth before radiotherapy and enhance the subsequent anticancer effects of limited-dose radiotherapy.

View Article and Find Full Text PDF

Purpose: In this study, we assessed whether the overexpression of MAP3K1 promotes the proliferation, migration, and invasion of breast cancer cells, which affect the prognosis of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative early stage breast cancer.

Methods: Two HR-positive, HER2-negative breast cancer cell lines (MCF7 and T-47D) overexpressing MAP3K1 were transfected with two MAP3K1 short hairpin RNA plasmids (shMAP3K1 [#3] and shMAP3K1 [#5]). The proliferation, migration, and invasion of these cells were then examined.

View Article and Find Full Text PDF

Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract.

View Article and Find Full Text PDF

Background: We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC).

Method And Materials: We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10).

View Article and Find Full Text PDF

Our previous study demonstrated that administration of NVP-BEZ235 (BEZ235), a dual PI3K/mTOR inhibitor, before radiotherapy (RT) enhanced the radiotherapeutic effect in colorectal cancer (CRC) cells both in vitro and in vivo. Here, we evaluated whether maintenance BEZ235 treatment, after combinatorial BEZ235 + RT therapy, prolonged the antitumor effect in CRC. K-RAS mutant CRC cells (HCT116 and SW480), wild-type CRC cells (HT29), and HCT116 xenograft tumors were separated into the following six study groups: (1) untreated (control); (2) RT alone; (3) BEZ235 alone; (4) RT + BEZ235; (5) maintenance BEZ235 following RT + BEZ235 (RT + BEZ235 + mBEZ235); and (6) maintenance BEZ235 following BEZ235 (BEZ235 + mBEZ235).

View Article and Find Full Text PDF

First-line antibiotic treatment for eradicating Helicobacter pylori (HP) infection is effective in HP-positive low-grade gastric mucosa-associated lymphoid tissue lymphoma (MALToma), but its role in HP-negative cases is uncertain. In this exploratory retrospective study, we assessed the outcome and potential predictive biomarkers for 25 patients with HP-negative localized gastric MALToma who received first-line HP eradication (HPE) therapy. An HP-negative status was defined as negative results on histology, rapid urease test, C urea breath test, and serology.

View Article and Find Full Text PDF

Background: Carboplatin, an antineoplastic agent, binds DNA and enhances radiotherapy (RT) effects. Carboplatin-loaded hydrogel (oxidized hyaluronic acid/adipic acid dihydrazide) enables the sustained drug release and facilitates the synergistic effect with RT.

Purpose: We investigated the effectiveness and convenience of hydrogel carboplatin combined with RT for mice glioma.

View Article and Find Full Text PDF

We previously reported that activation of the B-cell-activating factor (BAFF) pathway upregulates nuclear factor-κB (NF-κB) and induces BCL3 and BCL10 nuclear translocation in Helicobacter pylori (HP)-independent gastric diffuse large B-cell lymphoma (DLBCL) tumours with evidence of mucosa-associated lymphoid tissue (MALT). However, the significance of BAFF expression in HP independence of gastric low-grade MALT lymphomas without t(11;18)(q21;q21) remains unexplored. Sixty-four patients who underwent successful HP eradication for localized HP-positive gastric MALT lymphomas without t(11;18)(q21;q21) were studied.

View Article and Find Full Text PDF

Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target.

View Article and Find Full Text PDF

The development of an efficient colorectal cancer therapy is currently a public health priority. In the present work, we proposed a multifunctional theranostic micellar drug delivery system utilizing cationic PDMA-block-poly(ε-caprolactone) (PDMA-b-PCL) micelles as nanocarriers of SN-38 (7-ethyl-10-hydroxycamptothecin), ultra-small superparamagnetic iron oxide nanoparticles (USPIO), and small interfering RNA (siRNA) that targets human vascular endothelial growth factor (VEGF). The VEGF siRNA was conjugated to polyethylene glycol (PEG) (siRNA-PEG) before complexation with the micelles in order to improve the siRNA's stability and to prolong its retention time in the blood circulation.

View Article and Find Full Text PDF

The present study was aimed to investigate whether combination of molecular targeting therapy, a dual PI3K/mTOR inhibitor (BEZ235), with radiation can enhance the radiosensitivity of colorectal cancer cells (CRC). K-RAS mutant CRC cells (HCT 116 and SW 620) and wild type CRC cells (HT 29) were irradiated with different dose of radiation (0-6 Gy). The synergistic effects of combining radiation with different concentration of BEZ235 (0-10 nM) pretreatment were demonstrated by cell survival assay.

View Article and Find Full Text PDF

The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown.

View Article and Find Full Text PDF

Recombinant arginine deiminase (rADI) has been used in clinical trials for arginine-auxotrophic cancers. However, the emergence of rADI resistance, due to the overexpression of argininosuccinate synthetase (AS), has introduced an obstacle in its clinical application. Here, we have proposed a strategy for the intracellular delivery of rADI, which depletes both extracellular and intracellular arginine, to restore the sensitivity of rADI-resistant cancer cells.

View Article and Find Full Text PDF

Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported.

View Article and Find Full Text PDF

CYP2D6 (cytochrome P450 2D6) is one of the most important enzymes involved in drug metabolism, and CYP2D6 gene variants may cause toxic effects of therapeutic drugs or treatment failure. In this research, a rapid and simple method for genotyping the most common mutant alleles in the Asian population (CYP2D6*1/*1, CYP2D6*1/*10, CYP2D6*10/*10, CYP2D6*1/*5, CYP2D6*5/*10, and CYP2D6*5/*5) was developed by allele-specific polymerase chain reaction (AS-PCR) combined with capillary electrophoresis (CE). We designed a second mismatch nucleotide next to the single nucleotide polymorphism (SNP) site in allele-specific primers to increase the difference in PCR amplification.

View Article and Find Full Text PDF

Background: The peroxisome proliferator-activated receptor alpha (PPARA) and apolipoprotein E (APOE) proteins are reported to be correlated with lipid metabolism, cardiovascular disease, and breast cancer.

Methods: We screened APOE and PPARA (S24F and V227A) polymorphisms in 306 breast cancer patients and 300 noncancer controls and determined the relationship between their genetic polymorphisms and breast cancer risk. Interactions with clinical characteristics were also examined.

View Article and Find Full Text PDF

Background: Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively.

Methods: We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells.

View Article and Find Full Text PDF

A variable gene delivery system has been developed based on conjugating chitosan to biotin through a functionalized poly(ethylene glycol) (PEG) spacer, which can be used to further bind different molecules on the outer layer of a polymer/DNA complex by streptavidin (SA)-biotin linkage. In this study, TAT-conjugated SA was used as the model molecule to prove the conjugation function of the prepared complex. In addition, low-molecular-weight poly(ethyleneimine) (PEI) was added into the polymer/DNA complex to increase the transfection efficiency.

View Article and Find Full Text PDF

A novel cationic co-polymer was developed by grafting poly(ethylene glycol) (PEG) on guanidinylated polyallylamine (PAA) for gene delivery. Characterization of PEG-g-guanidinylated PAA/DNA complexes demonstrated that particle size increased and surface charge decreased with increasing the amount of PEG. The results of cytotoxicity assay proved that grafted PEG could effectively decrease the cytotoxicity of the complexes.

View Article and Find Full Text PDF

A novel cationic polymer was developed by conjugating imidazole and poly(ethylene glycol) (PEG) on poly(N-(8-aminooctyl)acrylamide) (P8Am) for complexing with pDNA to exhibit high gene expression with low cytotoxicity and the resistance against erythrocyte agglutination and serum inhibition. Cytotoxicity results indicated that these P8Am derivatives with varying substitutions were more biocompatible than unmodified P8Am and PEI control. Moreover, the particle size and zeta potential experiment demonstrated that they were capable of complexing pDNA into sub-micrometer (135-625 nm) and positively charged (+10 to +43 mV) particles, while the high degree of substitution might impede their pDNA complexation ability that formed less positive and larger polyplexes.

View Article and Find Full Text PDF

A series of poly(N-substituent acrylamide)s (PAms) that differ in alkylamine side-chain was synthesized via free radical polymerization. The PAms were designed to examine the effects of the methylene numbers (from 2 to 12) in the alkylamine side-chain on cytotoxicity, plasmid DNA (pDNA) binding affinity, cellular uptake efficiency and gene expression. The cytotoxicity of PAms evaluated in HEK293 cells using the MTT assay showed a trend of decreasing toxicity with increasing side-chain length and the IC50 values of all PAms were lower than that of polyethylenimine (PEI) control.

View Article and Find Full Text PDF