Publications by authors named "Minfeng Lv"

A facile co-gelation route has been developed to synthesize novel porous Fe(7)Co(3)/carbon composites with Fe(7)Co(3) nanoparticles embedded in the porous carbon matrix. The sol-gel process of this route simultaneously involves the hydrolysis of tetraethylorthosilicate (TEOS) and the polymerization of furfuryl alcohol (FA) within an ethanol solution containing TEOS, FA, and metal nitrates, which led to the inorganic/organic hybrid xerogel, accompanying metal salts spontaneously captured in the xerogel, mostly in the framework of poly(furfuryl alcohol) (PFA). Compared to the nanocasting route, the advantage of this method is that the formation of silica template and the impregnation of carbon precursor and metal salts were simultaneously carried out in one co-gelation process, which makes the synthesis very simple and eliminates the time-consuming synthesis of the silica template and multistep impregnation process.

View Article and Find Full Text PDF

Spinel ferrite, MFe 2O 4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor.

View Article and Find Full Text PDF

KCrF(3) has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively. It reveals that the ground state is the A-type antiferromagnetic in both phases.

View Article and Find Full Text PDF

First principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2k code, have been used to investigate the electronic and magnetic properties of YBaFe2O5, especially as regards the charge-orbital ordering. Although the total 3d charge disproportion is rather small, an orbital order parameter defined as the difference between t2g orbital occupations of Fe2+ and Fe3+ cations is large (0.73) and gives unambiguous evidence for charge and orbital ordering.

View Article and Find Full Text PDF