During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
May 2022
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and has infected more than 250 million people. A typical feature of COVID-19 is the lack of type I interferon (IFN-I)-mediated antiviral immunity in patients. However, the detailed molecular mechanisms by which SARS-CoV-2 evades the IFN-I-mediated antiviral response remain elusive.
View Article and Find Full Text PDFThe type I interferon (IFN-I, IFN-α/β)-mediated immune response is the first line of host defense against invading viruses. IFN-α/β binds to IFN-α/β receptors (IFNARs) and triggers the expression of IFN-stimulated genes (ISGs). Thus, stabilization of IFNARs is important for prolonging antiviral activity.
View Article and Find Full Text PDF