The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution.
View Article and Find Full Text PDFComposite organic-inorganic nanoparticles (COINs) are novel optical labels for detection of biomolecules. We have previously developed methods to encapsulate COINs and to functionalize them with antibodies. Here we report the first steps toward application of COINs to the detection of proteins in human tissues.
View Article and Find Full Text PDFPosttranslational modification (PTM) of proteins is likely to be the most common mechanism of altering the expression of genetic information. It is essential to characterize PTMs to establish a complete understanding of the activities of proteins. Here, we present a sensitive detection method using surface-enhanced Raman spectroscopy (SERS) that can detect PTMs from as little as zeptomoles of peptide.
View Article and Find Full Text PDFTo obtain a coding system for multiplex detection, we have developed a method to synthesize a new type of nanomaterial called composite organic-inorganic nanoparticles (COINs). The method allows the incorporation of a broad range of organic compounds into COINs to produce surface enhanced Raman scattering (SERS)-like spectra that are richer in variety than fluorescence-based signatures. Preliminary data suggest that COINs can be used as Raman tags for multiplex and ultrasensitive detection of biomolecules.
View Article and Find Full Text PDF