Biosci Biotechnol Biochem
April 2023
HAK family transporters primarily function as K+ transporters and play major roles in K+ uptake and translocation in plants, whereas several HAK transporters exhibit Na+ transport activity. OsHAK2, a rice HAK transporter, was shown to mediate Na+ transport in Escherichia coli in a previous study. In this study, we investigated whether OsHAK2 is involved in Na+ transport in the rice plant.
View Article and Find Full Text PDFPlant plasma membrane-type plasma membrane intrinsic protein (PIP) aquaporins are classified into two groups, PIP1s and PIP2s. In this study, we focused on HvPIP1;2, a PIP1 in barley (Hordeum vulgare), to dissect the molecular mechanisms that evoke HvPIP1-mediated water transport. No HvPIP1;2 protein was localized to the plasma membrane when expressed alone in Xenopus laevis oocytes.
View Article and Find Full Text PDFAbscisic acid (ABA) response element (ABRE)-binding factors (ABFs) are basic region/leucine zipper motif (bZIP) transcription factors that regulate the expression of ABA-induced genes containing ABRE in their promoters. The amino acid sequence of the wheat bZIP protein, TaABI5, showed high homology to that of Arabidopsis ABA insensitive 5 (ABI5). TaABI5 was classified into the clade of ABI5s in Arabidopsis and rice, unlike TRAB1 of rice, Wabi5 of wheat, and HvABI5 of barley in the bZIP Group A family, by a phylogenetic analysis.
View Article and Find Full Text PDFClass II high-affinity potassium transporters (HKTs) have been proposed to mediate Na+-K+ co-transport in plants, as well as Na+ and K+ homeostasis under K+-starved and saline environments. We identified class II HKTs, namely SvHKT2;1 and SvHKT2;2 (SvHKTs), from the halophytic turf grass, Sporobolus virginicus. SvHKT2;2 expression in S.
View Article and Find Full Text PDFCyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the oocyte heterologous expression system.
View Article and Find Full Text PDFSalinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L.
View Article and Find Full Text PDFTonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds.
View Article and Find Full Text PDFSalinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl.
View Article and Find Full Text PDFPrevious reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples.
View Article and Find Full Text PDFCO2 permeability of plasma membrane intrinsic protein 2 (PIP2) aquaporins of Hordeum vulgare L. was investigated. Five PIP2 members were heterologously expressed in Xenopus laevis oocytes.
View Article and Find Full Text PDFPlant Signal Behav
December 2012
Water homeostasis is crucial to the growth and survival of plants. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. We characterized a novel PIP2 gene, HvPIP2;8 in barley (Hordeum vulgare).
View Article and Find Full Text PDFWater homeostasis is crucial to the growth and survival of plants under water-related stress. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. Here we report the water transport activity and mechanisms for the regulation of barley (Hordeum vulgare) PIP aquaporins.
View Article and Find Full Text PDFIn one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR.
View Article and Find Full Text PDFThe release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the efflux. Since this response is similar to the malate efflux from wheat (Triticum aestivum) that is controlled by the TaALMT1 gene, we investigated whether homologs of TaALMT1 are present in rape and whether they are involved in the release of organic anions.
View Article and Find Full Text PDFThe internal conductance for CO(2) diffusion (g(i)) and CO(2) assimilation rate were measured and the related anatomical characteristics were investigated in transgenic rice leaves that overexpressed barley aquaporin HvPIP2;1. This study was performed to test the hypothesis that aquaporin facilitates CO(2) diffusion within leaves. The g(i) value was estimated for intact leaves by concurrent measurements of gas exchange and carbon isotope ratio.
View Article and Find Full Text PDFA novel SmtB/ArsR family metalloregulator, denoted BxmR, has been identified and characterized from the cyanobacterium Oscillatoria brevis. Genetic and biochemical evidence reveals that BxmR represses the expression of both bxa1, encoding a CPx-ATPase metal transporter, as well as a divergently transcribed operon encoding bxmR and bmtA, a heavy metal sequestering metallothionein. Derepression of the expression of all three genes is mediated by both monovalent (Ag(I) and Cu(I)) and divalent (Zn(II) and Cd(II)) heavy metal ions, a novel property among SmtB/ArsR metal sensors.
View Article and Find Full Text PDFBarley HvPIP2;1 is a plasma membrane aquaporin and its expression was down-regulated after salt stress in barley [Katsuhara et al. (2002) Plant Cell Physiol. 43: 885].
View Article and Find Full Text PDFA metallothionein (BmtA) and a CPx-ATPase (Bxa1) have been identified and characterized from the cyanobacterium Oscillatoria brevis. Both bmtA and bxa1 expression can be markedly induced in vivo by Zn(2+) or Cd(2+). Over-expression of bmtA or bxa1 in Escherichia coli enhances Zn(2+) and Cd(2+) tolerance in the transformant.
View Article and Find Full Text PDFWe identified three genes homologous to water channels in the plasma membrane type subfamily from roots of barley seedlings. These genes were designated HvPIP2;1, HvPIP1;3, and HvPIP1;5 after comparison to Arabidopsis aquaporins. Competitive reverse transcription (RT)-PCR was applied in order to distinguish and to quantify their transcripts.
View Article and Find Full Text PDFA novel gene related to heavy-metal transport was cloned and identified from the filamentous cyanobacterium Oscillatoria brevis. Sequence analysis of the gene (the Bxa1 gene) showed that its product possessed high homology with heavy-metal transport CPx-ATPases. The CPC motif, which is proposed to form putative cation transduction channel, was found in the sixth transmembrane helix.
View Article and Find Full Text PDF