Publications by authors named "Mineko Terao"

The Cornelia de Lange syndrome (CdLS) is a rare genetic disease, which is characterized by a cohesinopathy. Mutations of the NIPBL gene are observed in 65% of CdLS patients. A novel iPSC (induced Pluripotent Stem Cell) line was reprogrammed from the leukocytes of a CdLS patient carrying a missense mutation of the NIPBL gene.

View Article and Find Full Text PDF

All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results.

View Article and Find Full Text PDF

Background: Gastric-cancer is a heterogeneous type of neoplastic disease and it lacks appropriate therapeutic options. There is an urgent need for the development of innovative pharmacological strategies, particularly in consideration of the potential stratified/personalized treatment of this tumor. All-Trans Retinoic-acid (ATRA) is one of the active metabolites of vitamin-A.

View Article and Find Full Text PDF

Background: Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60-70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure.

View Article and Find Full Text PDF

The role played by lipids in the process of granulocytic differentiation activated by all-trans retinoic acid (ATRA) in Acute-Promyelocytic-Leukemia (APL) blasts is unknown. The process of granulocytic differentiation activated by ATRA in APL blasts is recapitulated in the NB4 cell-line, which is characterized by expression of the pathogenic PML-RARα fusion protein. In the present study, we used the NB4 model to define the effects exerted by ATRA on lipid homeostasis.

View Article and Find Full Text PDF

Xenobiotic-metabolizing enzymes (XMEs) expressed in the olfactory epithelium (OE) are known to metabolize odorants. Aldehyde oxidase (AOX) recognizes a wide range of substrates among which are substrates with aldehyde groups. Some of these AOX substrates are odorants, such as benzaldehyde and n-octanal.

View Article and Find Full Text PDF

Circular RNAs are regulatory molecules involved in numerous cellular processes and may be involved in tumour growth and diffusion. Here, we define the expression of 15 selected circular RNAs, which may control the process of epithelial-to-mesenchymal transition, using a panel of 18 breast cancer cell lines recapitulating the heterogeneity of these tumours and consisting of three groups according to the mesenchymal/epithelial phenotype. A circular RNA from the gene () shows low/undetectable levels in triple-negative mesenchymal cell lines, while its content is high in epithelial cell lines, independent of estrogen receptor or HER2 positivity.

View Article and Find Full Text PDF

Background: CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS.

View Article and Find Full Text PDF

Triple-negative breast cancer () is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (, and ) endowed with ATRA-sensitivity are characterized by genetic aberrations of the -gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD.

View Article and Find Full Text PDF

All-trans retinoic acid (ATRA), a recognized differentiating agent, has significant potential in the personalized/stratified treatment of breast cancer. The present study reports on the molecular mechanisms underlying the anti-tumor activity of ATRA in breast cancer. The work is based on transcriptomic experiments performed on ATRA-treated breast cancer cell-lines, short-term tissue cultures of patient-derived mammary-tumors and a xenograft model.

View Article and Find Full Text PDF

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of genes.

View Article and Find Full Text PDF

In the original publication of this article [1], the images of Figs. 4 and 5 were exchanged and the legends of the two figures did not correspond due to a typesetting error.

View Article and Find Full Text PDF

Background: All-trans-retinoic-acid (ATRA) is a promising agent in the prevention/treatment of breast-cancer. There is growing evidence that reprogramming of cellular lipid metabolism contributes to malignant transformation and progression. Lipid metabolism is implicated in cell differentiation and metastatic colonization and it is involved in the mechanisms of sensitivity/resistance to different anti-tumor agents.

View Article and Find Full Text PDF

Human AOX1 is a member of the mammalian aldehyde oxidase (AOX) family of enzymes and it is an emerging cytosolic enzyme involved in phase I drug-metabolism, bio-transforming a number of therapeutic agents and xenobiotics. The current trend in drug-development is to design molecules which are not recognized and inactivated by CYP450 monooxygenases, the main drug-metabolizing system, to generate novel therapeutic agents characterized by optimal pharmacokinetic and pharmacodynamic properties. Unfortunately, this has resulted in a substantial enrichment in molecules which are recognized and metabolized by AOXs.

View Article and Find Full Text PDF

Targeting of histone methylation has therapeutic potential in oncology. Here, we provide proof-of-principle that pharmacological inhibition of KDM5 histone-demethylases is a new strategy for the personalized treatment of HER2 breast cancer. The anti-proliferative effects of the prototype of a new class of selective KDM5-inhibitors (KDM5-inh1) are evaluated in 40 cell lines, recapitulating the heterogeneity of breast cancer.

View Article and Find Full Text PDF

All trans-retinoic acid (ATRA) is used in the treatment of acute promyelocytic leukemia (APL) and it is a promising agent also in solid tumors. The pharmacological activity of ATRA is mediated by the ligand-activated RAR and RXR transcription factors. In the present study, we define the basal and ATRA dependent RARα interactome in a RARα-overexpressing breast cancer cellular model, identifying 28 nuclear proteins.

View Article and Find Full Text PDF

As aldehyde oxidase (AOX) plays an emerging role in drug metabolism, understanding its significance for drug-drug interactions (DDI) is important. Therefore, we tested 10 compounds for species-specific and substrate-dependent differences in the inhibitory effect of AOX activity using genetically engineered HEK293 cells over-expressing human AOX1, mouse AOX1 or mouse AOX3. The IC values of 10 potential inhibitors of the three AOX enzymes were determined using phthalazine and O-benzylguanine as substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells grow differently than normal cells, but they still need healthy mitochondria to grow.
  • A special protein called FoxO3A helps cancer cells survive during tough times, like when there isn't enough food or when they are attacked by medicine.
  • Scientists are studying how FoxO3A moves to mitochondria in stressed cancer cells and how this could help create new treatments to stop cancer from surviving.
View Article and Find Full Text PDF

We generated 6 transgenic lines with insertion of an expression plasmid for the R883/M xanthine dehydrogenase (XDH) mutant protein. Approximately 20% of the animals deriving from one of the transgenic lines show ocular abnormalities and an increase in intra-ocular pressure which are consistent with glaucoma. The observed pathologic phenotype is not due to expression of the transgene, but rather the consequence of the transgene insertion site, which has been defined by genome sequencing.

View Article and Find Full Text PDF

Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse.

View Article and Find Full Text PDF

Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species-specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism.

View Article and Find Full Text PDF

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis.

View Article and Find Full Text PDF

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) is the first example of targeted therapy. In fact, the oncogenic fusion-protein (PML-RAR) typical of this leukemia contains the retinoid-nuclear-receptor RARα. PML-RAR is responsible for the differentiation block of the leukemic blast.

View Article and Find Full Text PDF