Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein.
View Article and Find Full Text PDFDendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons.
View Article and Find Full Text PDFNeurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice.
View Article and Find Full Text PDFIntestinal epithelial cells (IECs) are crucial for the digestive process and nutrient absorption. The intestinal epithelium is composed of the different cell types of the small intestine (mainly, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells). The small intestine is characterized by the presence of crypt-villus units that are in a state of homeostatic cell turnover.
View Article and Find Full Text PDFATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders.
View Article and Find Full Text PDFThe mechanism underlying the geometrical patterning of axon and dendrite wiring remains elusive, despite its crucial importance in the formation of functional neural circuits. The cerebellar Purkinje cell (PC) arborizes a typical planar dendrite, which forms an orthogonal network with granule cell (GC) axons. By using electrospun nanofiber substrates, we reproduce the perpendicular contacts between PC dendrites and GC axons in culture.
View Article and Find Full Text PDFencodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including . However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis.
View Article and Find Full Text PDFNeuronal migration is a critical step during the formation of functional neural circuits in the brain. Newborn neurons need to move across long distances from the germinal zone to their individual sites of function; during their migration, they must often squeeze their large, stiff nuclei, against strong mechanical stresses, through narrow spaces in developing brain tissue. Recent studies have clarified how actomyosin and microtubule motors generate mechanical forces in specific subcellular compartments and synergistically drive nuclear translocation in neurons.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
January 2019
Cell migration is a complex molecular event that requires translocation of a large, stiff nucleus, oftentimes through interstitial pores of submicron size in tissues. Remarkable progress in the past decade has uncovered an ever-increasing array of diverse nuclear dynamics and underlying cytoskeletal control in various cell models. In many cases, the microtubule motors dynein and kinesin directly interact with the nucleus via the LINC complex and steer directional nuclear movement, while actomyosin contractility and its global flow exert forces to deform and move the nucleus.
View Article and Find Full Text PDFBiological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account.
View Article and Find Full Text PDFCerebellar Purkinje cells arborize unique dendrites that exhibit a planar, fan shape. The dendritic branches fill the space of their receptive field with little overlap. This dendritic arrangement is well-suited to form numerous synapses with the afferent parallel fibers of the cerebellar granule cells in a non-redundant manner.
View Article and Find Full Text PDFDynamic control of the actin and microtubule cytoskeletons underlie nearly every critical process during neural development, and requires multiple dimensions of regulation. Formins are a family of fifteen proteins that functions as a major class of linear actin nucleators and regulates both actin and microtubule dynamics. The fact that several closely-related formins show complementary expression patterns during neural development and non-overlapping cytoskeletal functions indicates the need to identify the specialized cellular activities of individual formin members in different neural cell subtypes.
View Article and Find Full Text PDFFine structures of the mammalian brain are formed by neuronal migration during development. Newborn neurons migrate long distances from the germinal zone to individual sites of function by squeezing their largest cargo, the nucleus, through the crowded neural tissue. Nuclear translocation is thought to be orchestrated by microtubules, actin, and their associated motor proteins, dynein and myosin.
View Article and Find Full Text PDFDendritic filopodia of developing neurons function as environmental sensors, regulating the spatial organization of dendrites and proper targeting to presynaptic partners. Dendritic filopodia morphology is determined by the balance of F-actin assembled via two major nucleating pathways, the ARP2/3 complex and formins. The inverse-BAR protein MTSS1 is highly expressed in Purkinje cells (PCs) and has been shown to upregulate ARP2/3 activity.
View Article and Find Full Text PDFSomal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes.
View Article and Find Full Text PDFNuclear migration of newly born neurons is essential for cortex formation in the brain. The nucleus is translocated by actin and microtubules, yet the actual force generated by the interplay of these cytoskeletons remains elusive. High-resolution time-lapse observation of migrating murine cerebellar granule cells revealed that the nucleus actively rotates along the direction of its translocation, independently of centrosome motion.
View Article and Find Full Text PDFLight-inducible gene regulation has great potential for remote and noninvasive control of the fate and function of target cells. One method to achieve such control is delivery of heat shock protein (HSP) promoter-driven protein expression vectors and photothermal heaters into the cells, followed by activation by illumination. In this study, we show that gold nanorods (AuNRs) functionalized with two conventional lipids, oleate and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), are capable of efficient transfection and quick photoactivation of the HSP promoter.
View Article and Find Full Text PDFThyroid hormone 3,3',5-Triiodo-L-thyronine (T3) is essential for proper brain development. Perinatal loss of T3 causes severe growth defects in neurons and glia, including strong inhibition of dendrite formation in Purkinje cells in the cerebellar cortex. Here we show that T3 promotes dendritic outgrowth of Purkinje cells through induction of peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), a master regulator of mitochondrial biogenesis.
View Article and Find Full Text PDFA series of porphyrin-fullerene linked molecules has been synthesized to evaluate the effects of substituents and molecular structures on their charge-separation yield and the lifetime of a final charge-separated state in various hydrophilic environments. The selected high-performance molecule effectively achieved depolarization in a plasma cell membrane by visible light as well as two-photon excitation using a near-infrared light laser. Moreover, it was revealed that the depolarization can trigger neuronal firing in rat hippocampal neurons, demonstrating the potential and versatility for controlling cell functions using light.
View Article and Find Full Text PDFMitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial.
View Article and Find Full Text PDFElucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks.
View Article and Find Full Text PDFThe distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth.
View Article and Find Full Text PDFBackground: Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma.
View Article and Find Full Text PDFHippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells.
View Article and Find Full Text PDFNeural activity plays roles in the later stages of development of cortical excitatory neurons, including dendritic and axonal arborization, remodeling, and synaptogenesis. However, its role in earlier stages, such as migration and dendritogenesis, is less clear. Here we investigated roles of neural activity in the maturation of cortical neurons, using calcium imaging and expression of prokaryotic voltage-gated sodium channel, NaChBac.
View Article and Find Full Text PDF