Publications by authors named "Mindi He"

Purpose: Organ damage caused by electric shock has attracted great attention. Some animal investigations and clinical cases have suggested that electric shock can induce liver injury. This study aimed to investigate the potential mechanism of liver injury induced by electric shock.

View Article and Find Full Text PDF

The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd.

View Article and Find Full Text PDF

Mild whole-body hyperthermia has been shown to have anti-tumor effects through an immune-modulating mechanism. Before it is widely applied in the clinic, tremendous mechanistic research in animals is necessary to adhere to evidence-based principles. The radio frequency electromagnetic field (RF-EMF) based heating facility could be a good choice for hyperthermia treatment, but the heating characteristics of a facility, including structure design, electromagnetic and thermal dosimetry, and the biologic effects of hyperthermia, need to be well elucidated.

View Article and Find Full Text PDF

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death.

View Article and Find Full Text PDF

Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM).

View Article and Find Full Text PDF

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.

View Article and Find Full Text PDF

Cadmium (Cd), a predominant environmental pollutant, is a canonical toxicant that acts on the kidneys. However, the nephrotoxic effect and underlying mechanism activated by chronic exposure to Cd remain unclear. In the present study, male mice (C57BL/6J, 8 weeks) were treated with 0.

View Article and Find Full Text PDF

Cadmium (Cd), a common environmental and occupational toxicant, is an important risk factor for hearing loss. After exposure, Cd accumulates in the inner ear and induces spiral ganglion neuron (SGN) degeneration; however, the underlying mechanisms are poorly understood. Dysfunctional autophagy has been implicated in many neurodegenerative diseases, including Cd-induced neurotoxicity.

View Article and Find Full Text PDF

Metabolic disorders induced by arsenic exposure have attracted great public concern. However, it remains unclear whether hypothalamus-based central regulation mechanisms are involved in this process. Here, we exposed mice to 100 μg/L arsenic in drinking water and established a chronic arsenic exposure model.

View Article and Find Full Text PDF

With the global popularity of communication devices such as mobile phones, there are increasing concerns regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on the brain, one of the most important organs sensitive to RF-EMR exposure at 1,800 MHz. However, the effects of RF-EMR exposure on neuronal cells are unclear. Neurite outgrowth plays a critical role in brain development, therefore, determining the effects of 1,800 MHz RF-EMR exposure on neurite outgrowth is important for exploring its effects on brain development.

View Article and Find Full Text PDF

Arsenic is one of the most common environmental pollutants. Neurotoxicity induced by arsenic has become a major public health concern. However, the effects of arsenic-induced neurotoxicity in the brain and the underlying molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro.

View Article and Find Full Text PDF

The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood.

View Article and Find Full Text PDF

Hemorrhagic transformation (HT) following ischemia is one complication which worsens stroke outcome. During and after ischemia-reperfusion, persistent reduction of brain pH occurs. In a recent study, we found that GPR68 functions as a neuronal proton receptor and mediates a protective pathway in brain ischemia.

View Article and Find Full Text PDF
Article Synopsis
  • - G9a, a histone methyltransferase, is highly expressed in various tumor tissues, including nasopharyngeal carcinoma (NPC), suggesting its role in supporting tumor growth and spread.
  • - The study found that inhibiting G9a using a drug called BIX-01294 (BIX) significantly reduced cell proliferation and triggered apoptosis in NPC cell lines CNE1 and CNE2.
  • - BIX treatment led to a buildup of autophagosomes and disrupted lysosomal function, hinting that targeting G9a could be an effective therapeutic strategy for treating NPC by enhancing cytotoxic effects within cancer cells.
View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study.

View Article and Find Full Text PDF

Background And Purpose: Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury.

View Article and Find Full Text PDF

Nickel and its compounds, which are well-documented carcinogens, induce the Warburg effect in normal cells by stabilizing hypoxia-inducible factor 1 (HIF-1). Melatonin has shown diverse anticancer properties for its reactive oxygen species- (ROS-) scavenging ability. Our aim was to explore how melatonin antagonized a nickel-induced increment in aerobic glycolysis.

View Article and Find Full Text PDF

Along with gradually increases in mobile phone (MP) use, the mass media has played a vital role in informing the public regarding the potential health hazards of MP use. These media warnings have prompted public worries about health. The aim of the present study is to investigate the effects of media warnings about the possible health hazards of MP use on self-reported symptoms.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT) is widely used as a constituent of fungicides and plastic stabilizers in the industrial and agricultural fields, and is generally acknowledged to have potent neurotoxicity, especially in the hippocampus; however, the mechanism of induction of neurotoxicity by TMT remains elusive. Herein, we exposed Neuro-2a cells to different concentrations of TMT (2, 4, and 8 μM) for 24 h. Proteomic analysis, coupled with bioinformatics analysis, revealed the important role of macroautophagy/autophagy-lysosome machinery in TMT-induced neurotoxicity.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT) is a potent neurotoxin that causes neuroinflammation and neuronal cell death. Melatonin is a well-known anti-inflammatory agent with significant neuroprotective activity. Male C57BL/6J mice were intraperitoneally injected with a single dose of melatonin (10 mg/kg) before exposure to TMT (2.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic metal that is widely found in numerous environmental matrices and induces serious adverse effects in various organs and tissues. Bone tissue seems to be a crucial target of Cd contamination. Macroautophagy/autophagy has been proposed to play a pivotal role in Cd-mediated bone toxicity.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease.

View Article and Find Full Text PDF

Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT) decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH).

View Article and Find Full Text PDF

Cadmium (Cd) is a persistent environmental and occupational contaminant that accumulates in the liver and induces oxidative stress and inflammation. Melatonin possesses potent hepatoprotective properties against the development and progression of acute and chronic liver injury. Nevertheless, the molecular mechanism underlying the protective effects of melatonin against Cd-induced hepatotoxicity remains obscure.

View Article and Find Full Text PDF