The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells.
View Article and Find Full Text PDFInt J Mol Sci
September 2022
Breast cancer is the second leading cause of death for women worldwide. While monotherapy (single agent) treatments have been used for many years, they are not always effective, and many patients relapse after initial treatment. Moreover, in some patients the response to therapy becomes weaker, or resistance to monotherapy develops over time.
View Article and Find Full Text PDFP21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases.
View Article and Find Full Text PDFDuctal carcinoma (DCIS), which accounts for one out of every five new breast cancer diagnoses, will progress to potentially lethal invasive ductal carcinoma (IDC) in about 50% of cases. Vitamin D compounds have been shown to inhibit progression to IDC in the MCF10DCIS model. This inhibition appears to involve a reduction in the cancer stem cell-like population in MCF10DCIS tumors.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) is difficult to treat due to lack of druggable targets. We have found that treatment with the small molecule inhibitor KPT-9274 inhibits growth of TNBC cells and eventually leads to cell death. KPT-9274 is a dual specific inhibitor of PAK4 and Nicotinamide Phosphoribosyltransferase (NAMPT).
View Article and Find Full Text PDFPurpose: The objective of this study was to evaluate kinaesthetic proprioceptive deficit after knee anterior cruciate ligament (ACL) reconstruction in two populations of athletes, those in the post-surgery period and those in re-training during the intensive program-training phase.
Methods: We performed a prospective study in ACL-operated athletes without previous knee injuries, with 32 athletes in each group. Time since surgery in the operated athletes in the post-surgery group was 21 to 35 days, and between three and 9 months in the re-training group.
The p21 Activated Kinases (PAKs) are a family of serine threonine kinases, that consist of 6 members, PAKs 1-6, which are positioned at an intersection of multiple signaling pathways implicated in oncogenesis. The PAKs were originally identified as protein kinases that function downstream of the Ras related Rho GTPases Cdc42 and Rac. PAK1 and PAK4, which belong to Group I and Group II PAKs, respectively, are most often associated with tumorigenesis.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2018
Sustained proliferative signaling and de-regulated cellular bioenergetics are two of the chief hallmarks of cancer. Alterations in the Ras pathway and its downstream effectors are among the major drivers for uncontrolled cell growth in many cancers. The GTPases are one of the signaling molecules that activate crucial signal transducing pathways downstream of Ras through several effector proteins.
View Article and Find Full Text PDFThe p-21 Activated Kinase 4 (PAK4) protein kinase is implicated in many cancers, including breast cancer. Overexpression of PAK4 is sufficient to cause mouse mammary epithelial cells (iMMECs) to become tumorigenic. To gain insight into the long-term gene expression changes that occur downstream to PAK4, we performed Next Generation Sequencing of RNA collected from PAK4 overexpressing iMMECs and wild-type iMMECs.
View Article and Find Full Text PDFConstitutive depletion of p21-activated kinase 4 (PAK4) in the mouse causes embryonic lethality associated with heart and brain defects. Given that conventional gene depletion of PAK1 or PAK3 caused functional deficits in the mouse pancreas, while gene depletion of PAK5 or PAK6 did not, we asked if PAK4 might have a functional role in pancreas development. We therefore introduced conditional, Pdx1-Cre-mediated, pancreatic PAK4 gene depletion in the mouse, verified by loss of PAK4 protein expression in the pancreas.
View Article and Find Full Text PDFBreast cancer is a heterogeneous disease consisting of several subtypes. Among these subtypes, triple negative breast cancer is particularly difficult to treat. This is due to a lack of understanding of the mechanisms behind the disease, and consequently a lack of druggable targets.
View Article and Find Full Text PDFThe p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6.
View Article and Find Full Text PDFThe Pak4 protein kinase, normally expressed at low level in the mammary gland, is commonly overexpressed in breast cancer. Overexpression of Pak4 transforms mouse mammary epithelial cells in vitro and renders these cells tumorigenic in athymic mice in vivo. Here we show that Pak4 is also required for oncogenic transformation of the human breast cancer cell line MDA-MB-231.
View Article and Find Full Text PDFObjectives: PAK5 and PAK6 are protein kinases highly expressed in the brain. Previously, we observed that Pak6 knockout mice gained significantly more weight during development than Pak5 knockout mice as well as wild-type controls and double-knockout mice lacking both Pak5 and Pak6. In this study, we assessed the effects of exercise on food intake and weight gain of these mice as well as their sensitivity to the stimulant effects of amphetamine.
View Article and Find Full Text PDFMol Cell Proteomics
August 2013
Although K-Ras, Cdc42, and PAK4 signaling are commonly deregulated in cancer, only a few studies have sought to comprehensively examine the spectrum of phosphorylation-mediated signaling downstream of each of these key signaling nodes. In this study, we completed a label-free quantitative analysis of oncogenic K-Ras, activated Cdc42, and PAK4-mediated phosphorylation signaling, and report relative quantitation of 2152 phosphorylated peptides on 1062 proteins. We define the overlap in phosphopeptides regulated by K-Ras, Cdc42, and PAK4, and find that perturbation of these signaling components affects phosphoproteins associated with microtubule depolymerization, cytoskeletal organization, and the cell cycle.
View Article and Find Full Text PDFThe p21-activated kinases are effector proteins for Rho-family GTPases. PAK4, PAK5, and PAK6 are the group II PAKs associated with neurite outgrowth, filopodia formation, and cell survival. Pak4 knockout mice are embryonic lethal, while Pak5, Pak6, and Pak5/Pak6 double knockout mice are viable and fertile.
View Article and Find Full Text PDFPaks4, along with Paks5, and 6 are members of the group B family of p21-activated kinases (Paks). The Paks play multiple different roles in controlling cell morphology, cell growth, proliferation, and signaling. Pak4 has essential roles in embryonic development (Qu et al.
View Article and Find Full Text PDFPAKs 4, 5 and 6 are members of the group B family of p21-activated kinases. Among this group, PAK4 has been most extensively studied. While it has essential roles in embryonic development, in adults high levels of PAK4 are frequently associated with cancer.
View Article and Find Full Text PDFp21-activated kinases (PAKs) are involved in signal cascades relevant for nociceptive processing and neuropathic pain. Particularly, the recently described group B PAKs 4, 5 and 6 regulate MAP-kinases and the rearrangement of the actin cytoskeleton, both of which have been linked to pain processing. However, a specific role of these PAKs in nociception has not yet been demonstrated.
View Article and Find Full Text PDFSynaptic transmission is mediated by a complex set of molecular events that must be coordinated in time and space. While many proteins that function at the synapse have been identified, the signaling pathways regulating these molecules are poorly understood. Pak5 (p21-activated kinase 5) is a brain-specific isoform of the group II Pak kinases whose substrates and roles within the central nervous system are largely unknown.
View Article and Find Full Text PDFBreast cancer is a heterogeneous disease that develops through a multistep process whose molecular basis remains poorly understood. The molecular mechanisms of breast cancer progression have been extensively studied using the MCF10 model. We summarized recent results on differential expression of proteins in the MCF10 cell series - MCF10A, MCF10AT1, MCF10DCIS.
View Article and Find Full Text PDFTransgenic Res
August 2012
The serine-threonine kinase PAK4 plays a pivotal role in cell proliferation, survival, and control of the cytoskeleton. Mice that lack Pak4 die in midgestation prior to embryonic day E11 from unidentified causes. Analysis of PAK4 protein levels demonstrated that it was highly expressed in the whole embryo and in the developing heart but became low in the hearts of adult mice.
View Article and Find Full Text PDFThe Pak4 serine/threonine kinase regulates cytoskeletal organization, and controls cell growth, proliferation, and survival. Deletion of Pak4 in mice results in embryonic lethality prior to embryonic day 11.5.
View Article and Find Full Text PDFThe serine/threonine kinase PAK4 regulates cytoskeletal architecture, and controls cell proliferation and survival. In most adult tissues PAK4 is expressed at low levels, but overexpression of PAK4 is associated with uncontrolled proliferation, inappropriate cell survival, and oncogenic transformation. Here we have studied for the first time, the role for PAK4 in the cell cycle.
View Article and Find Full Text PDFThe Pak4 serine/threonine kinase is highly expressed in many cancer cell lines and human tumors. Although several studies have addressed the role for Pak4 in transformation of fibroblasts, most human cancers are epithelial in origin. Epithelial cancers are associated not only with changes in cell growth but also with changes in the cellular organization within the three-dimensional (3D) architecture of the affected tissues.
View Article and Find Full Text PDF