Publications by authors named "Mincong Liu"

Redox signaling plays a key role in skeletal muscle remodeling induced by exercise and prolonged inactivity, but it is unclear which oxidant triggers myofiber hypertrophy due to the lack of strategies to precisely regulate individual oxidants . In this study, we used tetrathiomolybdate (TM) to dissociate the link between superoxide (O) and hydrogen peroxide and thereby to specifically explore the role of O in muscle hypertrophy in C2C12 cells and mice. TM can linearly regulate intracellular O levels by inhibition of superoxide dismutase 1 (SOD1).

View Article and Find Full Text PDF

The development of cost-effective and high-performance non-noble metal catalysts for the oxygen reduction reaction (ORR) holds substantial promise for real-world applications. Introducing a secondary metal to design bimetallic sites enables effective modulation of a metal-nitrogen-carbon (M-N-C) catalyst's electronic structure, providing new opportunities for enhancing ORR activity and stability. Here, we successfully synthesized an innovative hierarchical porous carbon material with dual sites of Zn and Mg (Zn/Mg-N-C) using polymeric ionic liquids (PILs) as precursors and SBA-15 as a template through a bottom-up approach.

View Article and Find Full Text PDF

Zn-N-C catalysts have garnered attention as potential electrocatalysts for the oxygen reduction reaction (ORR). However, their intrinsic limitations, including poor activity and a low density of active sites, continue to hinder their electrocatalytic performance. In this study, we have devised a dual-template strategy for the synthesis of Zn, N, S co-doped nanoporous carbon-based catalysts (Zn-N/S-C(S, Z)) with a substantial specific surface area and a graded pore structure.

View Article and Find Full Text PDF

As acetonitrile is a widely used solvent for the chemical industry, the recovery of acetonitrile from acetonitrile wastewater is significant for both industrial cost reduction and environmental protection. In this article, a simple, low-energy, and low-cost strategy is proposed for the effective separation of acetonitrile from high-concentration acetonitrile wastewater. The approach is based on a sequential combination of two steps: salt-induced phase separation and hydrophobic filtration.

View Article and Find Full Text PDF

() formula granules and preparations have been used as a popular traditional Chinese medicine for clinical treatment since they have good pharmacological activity to treat nervous system diseases. Gastrodin and parishins have been the main active components in aqueous extracts for formula granules, but their pharmacological activities and metabolism are different. For quality control of the extracts, the extraction conditions should be investigated to accurately control the contents of two kinds of components.

View Article and Find Full Text PDF

Controllable nitrogen doping is an effective way to regulate the electronic properties of graphene and further to facilitate its wider application. However, the synthesis of high-quality nitrogen-doped graphene (NG) with a controllable nitrogen configuration still faces considerable challenges. In this work, we present for the first time a simple method for the one-step synthesis of NG with ionic liquids (ILs) as precursors, which avoids the defects introduced by secondary doping and simplifies the process.

View Article and Find Full Text PDF

Electrocatalysts are becoming increasingly important for both energy conversion and environmental catalysis. Plasma technology can realize surface etching and heteroatom doping, and generate highly dispersed components and redox species to increase the exposure of the active edge sites so as to improve the surface utilization and catalytic activity. This review summarizes the recent plasma-assisted preparation methods of noble metal catalysts, non-noble metal catalysts, non-metal catalysts, and other electrochemical catalysts, with emphasis on the characteristics of plasma-assisted methods.

View Article and Find Full Text PDF

Electrocatalysts with strong stability and high electrocatalytic activity have received increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck problems concerning stability, efficiency, and cost, which prevent the development of ORR catalysts. Herein, we prepared bimetal FeCo alloy nanoparticles wrapped in Nitrogen (N)-doped graphitic carbon, using Co-Fe Prussian blue analogs (Co[Fe(CN)], Co-Fe PBA) by the microwave-assisted carbon bath method (MW-CBM) as a precursor, followed by dielectric barrier discharge (DBD) plasma treatment.

View Article and Find Full Text PDF

We study the time-dependent asymptotic stress fields near the tip of a mode I plane stress crack in a hydrogel. The analysis is based on a three-dimensional continuum model which describes the viscoelastic behaviour of a hydrogel gel with permanent and transient cross-links. The viscoelasticity results from the breaking and healing of the transient cross-links in the gel network.

View Article and Find Full Text PDF