Publications by authors named "Minchun Zhang"

Article Synopsis
  • Research indicates that gut microbiota plays a significant role in obesity, but the specific microbes involved and their mechanisms are not yet fully understood.
  • A study with 631 obese individuals and 374 normal-weight controls identified a cluster of microbes dominated by Megamonas, which is more prevalent in the obese population.
  • The presence of Megamonas rupellensis is linked to increased lipid absorption and obesity, suggesting that targeting this microbe and its ability to degrade myo-inositol could lead to new obesity management strategies.
View Article and Find Full Text PDF

Context: Cushing syndrome (CS) is a severe endocrine disease characterized by excessive secretion of cortisol with multiple metabolic disorders. While gut microbial dysbiosis plays a vital role in metabolic disorders, the role of gut microbiota in CS remains unclear.

Objective: The objective of this work is to examine the alteration of gut microbiota in patients with CS.

View Article and Find Full Text PDF

Propionate is a short-chain fatty acid that is generated upon microbiome-mediated fiber fermentation in the intestine. By modulating immune and metabolic pathways, propionate exerts many health benefits. Key bacterial species, such as Bacteroides thetaiotaomicron, generate propionate, but the biochemical pathways and specific functions remain undetermined.

View Article and Find Full Text PDF

The gut microbiota interacts with intestinal epithelial cells through microbial metabolites to regulate the release of gut hormones. We investigated whether the gut microbiota affects the postprandial glucagon-like peptide-1 (GLP-1) response using antibiotic-treated mice and germ-free mice. Gut microbiome depletion completely abolished postprandial GLP-1 response in the circulation and ileum in a lipid tolerance test.

View Article and Find Full Text PDF

Artificial sweeteners (AS) have been widely used as sugar substitutes to reduce calorie intake. However, it was reported that high doses of AS induced glucose intolerance via modulating gut microbiota. The objective of this study was to investigate the effects of lower doses of sucralose on fecal microbiota in obesity.

View Article and Find Full Text PDF

The gut microbiota is recognized as a major modulator of metabolic disorders such as type 2 diabetes. Dapagliflozin, sodium glucose cotransporter 2 inhibitors (SGLT2i), enhances renal glucose excretion, and lowers blood glucose levels. The study aimed to determine the effects of dapagliflozin on fecal microbiota in a type 2 diabetic rat model.

View Article and Find Full Text PDF

Objectives: Non-nutritive sweeteners (NNS) are widely used as replacements for table sugar in beverages and dessert. However, the metabolic effects of NNS remain controversial. This study aimed to investigate the effects of various sucralose loads on glucose metabolism and expression of sweet taste receptors (STR) and glucose transporters in a high-fat diet (HFD) rats.

View Article and Find Full Text PDF

Disordered intestinal sweet taste receptors (STRs) are implicated in glucose homeostasis by involving in incretin secretion and glucose absorption. However, the effects of antidiabetic medications on STRs, downstream molecules, and glucose transporters expression are unknown. In our study, ZDF rats (n=24) were randomly treated by metformin (MET, 215.

View Article and Find Full Text PDF

Objective: Recent studies have demonstrated that gut microbiota was closely related to metabolic disorders such as type 2 diabetes. Oral antidiabetic medications including metformin, acarbose and sitagliptin lowered blood glucose levels via acting on the gastrointestinal tract. The aim of the study was to observe the comparisons among those medications on gut microbiota composition.

View Article and Find Full Text PDF